Skip to content
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion tests/test_bundle_get_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def test_get_all_bundles_list(self, params):
output = get_all_bundles_list(**params)
self.assertTrue(isinstance(output, list))
self.assertTrue(isinstance(output[0], tuple))
self.assertTrue(len(output[0]) == 2)
self.assertEqual(output[0], 2)

@parameterized.expand([TEST_CASE_1, TEST_CASE_5])
@skip_if_quick
Expand Down
10 changes: 6 additions & 4 deletions tests/test_compute_regression_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,22 +70,24 @@ def test_shape_reduction(self):
mt = mt_fn(reduction="mean")
mt(in_tensor, in_tensor)
out_tensor = mt.aggregate()
self.assertTrue(len(out_tensor.shape) == 1)
self.assertEqual(len(out_tensor.shape), 1)

mt = mt_fn(reduction="sum")
mt(in_tensor, in_tensor)
out_tensor = mt.aggregate()
self.assertTrue(len(out_tensor.shape) == 0)
self.assertEqual(len(out_tensor.shape), 0)

mt = mt_fn(reduction="sum") # test reduction arg overriding
mt(in_tensor, in_tensor)
out_tensor = mt.aggregate(reduction="mean_channel")
self.assertTrue(len(out_tensor.shape) == 1 and out_tensor.shape[0] == batch)
self.assertEqual(len(out_tensor.shape), 1)
self.assertEqual(out_tensor.shape[0], batch)

mt = mt_fn(reduction="sum_channel")
mt(in_tensor, in_tensor)
out_tensor = mt.aggregate()
self.assertTrue(len(out_tensor.shape) == 1 and out_tensor.shape[0] == batch)
self.assertEqual(len(out_tensor.shape), 1)
self.assertEqual(out_tensor.shape[0], batch)

def test_compare_numpy(self):
set_determinism(seed=123)
Expand Down
16 changes: 8 additions & 8 deletions tests/test_handler_stats.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,9 +76,9 @@ def _update_metric(engine):
if has_key_word.match(line):
content_count += 1
if epoch_log is True:
self.assertTrue(content_count == max_epochs)
self.assertEqual(content_count, max_epochs)
else:
self.assertTrue(content_count == 2) # 2 = len([1, 2]) from event_filter
self.assertEqual(content_count, 2) # 2 = len([1, 2]) from event_filter

@parameterized.expand([[True], [get_event_filter([1, 3])]])
def test_loss_print(self, iteration_log):
Expand Down Expand Up @@ -116,9 +116,9 @@ def _train_func(engine, batch):
if has_key_word.match(line):
content_count += 1
if iteration_log is True:
self.assertTrue(content_count == num_iters * max_epochs)
self.assertEqual(content_count, num_iters * max_epochs)
else:
self.assertTrue(content_count == 2) # 2 = len([1, 3]) from event_filter
self.assertEqual(content_count, 2) # 2 = len([1, 3]) from event_filter

def test_loss_dict(self):
log_stream = StringIO()
Expand Down Expand Up @@ -150,7 +150,7 @@ def _train_func(engine, batch):
for line in output_str.split("\n"):
if has_key_word.match(line):
content_count += 1
self.assertTrue(content_count > 0)
self.assertGreater(content_count, 0)

def test_loss_file(self):
key_to_handler = "test_logging"
Expand Down Expand Up @@ -184,7 +184,7 @@ def _train_func(engine, batch):
for line in output_str.split("\n"):
if has_key_word.match(line):
content_count += 1
self.assertTrue(content_count > 0)
self.assertGreater(content_count, 0)

def test_exception(self):
# set up engine
Expand Down Expand Up @@ -239,7 +239,7 @@ def _update_metric(engine):
for line in output_str.split("\n"):
if has_key_word.match(line):
content_count += 1
self.assertTrue(content_count > 0)
self.assertGreater(content_count, 0)

def test_default_logger(self):
log_stream = StringIO()
Expand Down Expand Up @@ -274,7 +274,7 @@ def _train_func(engine, batch):
for line in output_str.split("\n"):
if has_key_word.match(line):
content_count += 1
self.assertTrue(content_count > 0)
self.assertGreater(content_count, 0)


if __name__ == "__main__":
Expand Down
2 changes: 1 addition & 1 deletion tests/test_invertd.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,7 @@ def test_invert(self):
# 25300: 2 workers (cpu, non-macos)
# 1812: 0 workers (gpu or macos)
# 1821: windows torch 1.10.0
self.assertTrue((reverted.size - n_good) < 40000, f"diff. {reverted.size - n_good}")
self.assertLess((reverted.size - n_good), 40000, f"diff. {reverted.size - n_good}")

set_determinism(seed=None)

Expand Down
4 changes: 2 additions & 2 deletions tests/test_load_spacing_orientation.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ def test_load_spacingd(self, filename):
ref = resample_to_output(anat, (1, 0.2, 1), order=1)
t2 = time.time()
print(f"time scipy: {t2 - t1}")
self.assertTrue(t2 >= t1)
self.assertGreaterEqual(t2, t1)
np.testing.assert_allclose(res_dict["image"].affine, ref.affine)
np.testing.assert_allclose(res_dict["image"].shape[1:], ref.shape)
np.testing.assert_allclose(ref.get_fdata(), res_dict["image"][0], atol=0.05)
Expand All @@ -68,7 +68,7 @@ def test_load_spacingd_rotate(self, filename):
ref = resample_to_output(anat, (1, 2, 3), order=1)
t2 = time.time()
print(f"time scipy: {t2 - t1}")
self.assertTrue(t2 >= t1)
self.assertGreaterEqual(t2, t1)
np.testing.assert_allclose(res_dict["image"].affine, ref.affine)
if "anatomical" not in filename:
np.testing.assert_allclose(res_dict["image"].shape[1:], ref.shape)
Expand Down
4 changes: 2 additions & 2 deletions tests/test_meta_affine.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ def test_linear_consistent(self, xform_cls, input_dict, atol):
diff = np.abs(itk.GetArrayFromImage(ref_2) - itk.GetArrayFromImage(expected))
avg_diff = np.mean(diff)

self.assertTrue(avg_diff < atol, f"{xform_cls} avg_diff: {avg_diff}, tol: {atol}")
self.assertLess(avg_diff, atol, f"{xform_cls} avg_diff: {avg_diff}, tol: {atol}")

@parameterized.expand(TEST_CASES_DICT)
def test_linear_consistent_dict(self, xform_cls, input_dict, atol):
Expand All @@ -175,7 +175,7 @@ def test_linear_consistent_dict(self, xform_cls, input_dict, atol):
diff = {k: np.abs(itk.GetArrayFromImage(ref_2[k]) - itk.GetArrayFromImage(expected[k])) for k in keys}
avg_diff = {k: np.mean(diff[k]) for k in keys}
for k in keys:
self.assertTrue(avg_diff[k] < atol, f"{xform_cls} avg_diff: {avg_diff}, tol: {atol}")
self.assertLess(avg_diff[k], atol, f"{xform_cls} avg_diff: {avg_diff}, tol: {atol}")


if __name__ == "__main__":
Expand Down
2 changes: 1 addition & 1 deletion tests/test_persistentdataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,7 +165,7 @@ def test_different_transforms(self):
im1 = PersistentDataset([im], Identity(), cache_dir=path, hash_transform=json_hashing)[0]
im2 = PersistentDataset([im], Flip(1), cache_dir=path, hash_transform=json_hashing)[0]
l2 = ((im1 - im2) ** 2).sum() ** 0.5
self.assertTrue(l2 > 1)
self.assertGreater(l2, 1)


if __name__ == "__main__":
Expand Down
2 changes: 1 addition & 1 deletion tests/test_rand_weighted_cropd.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,7 +154,7 @@ def test_rand_weighted_cropd(self, _, init_params, input_data, expected_shape, e
crop = RandWeightedCropd(**init_params)
crop.set_random_state(10)
result = crop(input_data)
self.assertTrue(len(result) == init_params["num_samples"])
self.assertEqual(len(result), init_params["num_samples"])
_len = len(tuple(input_data.keys()))
self.assertTupleEqual(tuple(result[0].keys())[:_len], tuple(input_data.keys()))

Expand Down
2 changes: 1 addition & 1 deletion tests/test_recon_net_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ def test_reshape_channel_complex(self, test_data):
def test_complex_normalize(self, test_data):
result, mean, std = complex_normalize(test_data)
result = result * std + mean
self.assertTrue((((result - test_data) ** 2).mean() ** 0.5).item() < 1e-5)
self.assertLess((((result - test_data) ** 2).mean() ** 0.5).item(), 1e-5)

@parameterized.expand(TEST_PAD)
def test_pad(self, test_data):
Expand Down
2 changes: 1 addition & 1 deletion tests/test_reg_loss_integration.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@ def forward(self, x):
# backward pass
loss_val.backward()
optimizer.step()
self.assertTrue(init_loss > loss_val, "loss did not decrease")
self.assertGreater(init_loss, loss_val, "loss did not decrease")


if __name__ == "__main__":
Expand Down
4 changes: 2 additions & 2 deletions tests/test_sobel_gradient.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,8 +164,8 @@ def test_sobel_gradients(self, image, arguments, expected_grad):
)
def test_sobel_kernels(self, arguments, expected_kernels):
sobel = SobelGradients(**arguments)
self.assertTrue(sobel.kernel_diff.dtype == expected_kernels[0].dtype)
self.assertTrue(sobel.kernel_smooth.dtype == expected_kernels[0].dtype)
self.assertEqual(sobel.kernel_diff.dtype, expected_kernels[0].dtype)
self.assertEqual(sobel.kernel_smooth.dtype, expected_kernels[0].dtype)
assert_allclose(sobel.kernel_diff, expected_kernels[0])
assert_allclose(sobel.kernel_smooth, expected_kernels[1])

Expand Down
4 changes: 2 additions & 2 deletions tests/test_sobel_gradientd.py
Original file line number Diff line number Diff line change
Expand Up @@ -187,8 +187,8 @@ def test_sobel_gradients(self, image_dict, arguments, expected_grad):
)
def test_sobel_kernels(self, arguments, expected_kernels):
sobel = SobelGradientsd(**arguments)
self.assertTrue(sobel.kernel_diff.dtype == expected_kernels[0].dtype)
self.assertTrue(sobel.kernel_smooth.dtype == expected_kernels[0].dtype)
self.assertEqual(sobel.kernel_diff.dtype, expected_kernels[0].dtype)
self.assertEqual(sobel.kernel_smooth.dtype, expected_kernels[0].dtype)
assert_allclose(sobel.kernel_diff, expected_kernels[0])
assert_allclose(sobel.kernel_smooth, expected_kernels[1])

Expand Down
2 changes: 1 addition & 1 deletion tests/test_threadcontainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ def test_container(self):

self.assertTrue(con.is_alive)
self.assertIsNotNone(con.status())
self.assertTrue(len(con.status_dict) > 0)
self.assertGreater(len(con.status_dict), 0)

con.join()

Expand Down
2 changes: 1 addition & 1 deletion tests/test_warp.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,7 @@ def test_itk_benchmark(self):
relative_diff = np.mean(
np.divide(monai_result - itk_result, itk_result, out=np.zeros_like(itk_result), where=(itk_result != 0))
)
self.assertTrue(relative_diff < 0.01)
self.assertLess(relative_diff, 0.01)

@parameterized.expand(TEST_CASES, skip_on_empty=True)
def test_resample(self, input_param, input_data, expected_val):
Expand Down