Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 31 additions & 11 deletions monai/data/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,8 +50,12 @@
issequenceiterable,
look_up_option,
optional_import,
pytorch_after,
)

if pytorch_after(1, 13):
# import private code for reuse purposes, comment in case things break in the future
from torch.utils.data._utils.collate import collate_tensor_fn, default_collate_fn_map
pd, _ = optional_import("pandas")
DataFrame, _ = optional_import("pandas", name="DataFrame")
nib, _ = optional_import("nibabel")
Expand Down Expand Up @@ -444,22 +448,31 @@ def pickle_operations(data, key=PICKLE_KEY_SUFFIX, is_encode: bool = True):
return data


def collate_meta_tensor_fn(batch, *, collate_fn_map=None):
"""
Collate a sequence of meta tensor into a single batched metatensor. This is called by `collage_meta_tensor`
and so should not be used as a collate function directly in dataloaders.
"""
collate_fn = collate_tensor_fn if pytorch_after(1, 13) else default_collate
collated = collate_fn(batch) # type: ignore
meta_dicts = [i.meta or TraceKeys.NONE for i in batch]
common_ = set.intersection(*[set(d.keys()) for d in meta_dicts if isinstance(d, dict)])
if common_:
meta_dicts = [{k: d[k] for k in common_} if isinstance(d, dict) else TraceKeys.NONE for d in meta_dicts]
collated.meta = default_collate(meta_dicts)
collated.applied_operations = [i.applied_operations or TraceKeys.NONE for i in batch]
collated.is_batch = True
return collated


def collate_meta_tensor(batch):
"""collate a sequence of meta tensor sequences/dictionaries into
a single batched metatensor or a dictionary of batched metatensor"""
if not isinstance(batch, Sequence):
raise NotImplementedError()
elem_0 = first(batch)
if isinstance(elem_0, MetaObj):
collated = default_collate(batch)
meta_dicts = [i.meta or TraceKeys.NONE for i in batch]
common_ = set.intersection(*[set(d.keys()) for d in meta_dicts if isinstance(d, dict)])
if common_:
meta_dicts = [{k: d[k] for k in common_} if isinstance(d, dict) else TraceKeys.NONE for d in meta_dicts]
collated.meta = default_collate(meta_dicts)
collated.applied_operations = [i.applied_operations or TraceKeys.NONE for i in batch]
collated.is_batch = True
return collated
return collate_meta_tensor_fn(batch)
if isinstance(elem_0, Mapping):
return {k: collate_meta_tensor([d[k] for d in batch]) for k in elem_0}
if isinstance(elem_0, (tuple, list)):
Expand All @@ -479,9 +492,16 @@ def list_data_collate(batch: Sequence):
Need to use this collate if apply some transforms that can generate batch data.

"""

if pytorch_after(1, 13):
# needs to go here to avoid circular import
from monai.data.meta_tensor import MetaTensor

default_collate_fn_map.update({MetaTensor: collate_meta_tensor_fn})
elem = batch[0]
data = [i for k in batch for i in k] if isinstance(elem, list) else batch
key = None
collate_fn = default_collate if pytorch_after(1, 13) else collate_meta_tensor
try:
if config.USE_META_DICT:
data = pickle_operations(data) # bc 0.9.0
Expand All @@ -490,9 +510,9 @@ def list_data_collate(batch: Sequence):
for k in elem:
key = k
data_for_batch = [d[key] for d in data]
ret[key] = collate_meta_tensor(data_for_batch)
ret[key] = collate_fn(data_for_batch)
else:
ret = collate_meta_tensor(data)
ret = collate_fn(data)
return ret
except RuntimeError as re:
re_str = str(re)
Expand Down