Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MapLabelValue support tensor/gpu backend #6872

Merged
merged 2 commits into from
Aug 15, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 28 additions & 19 deletions monai/transforms/utility/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -1207,41 +1207,50 @@ class MapLabelValue:

"""

backend = [TransformBackends.NUMPY]
backend = [TransformBackends.NUMPY, TransformBackends.TORCH]

def __init__(self, orig_labels: Sequence, target_labels: Sequence, dtype: DtypeLike = np.float32) -> None:
"""
Args:
orig_labels: original labels that map to others.
target_labels: expected label values, 1: 1 map to the `orig_labels`.
dtype: convert the output data to dtype, default to float32.
if dtype is from PyTorch, the transform will use the pytorch backend, else with numpy backend.

"""
if len(orig_labels) != len(target_labels):
raise ValueError("orig_labels and target_labels must have the same length.")
if all(o == z for o, z in zip(orig_labels, target_labels)):
raise ValueError("orig_labels and target_labels are exactly the same, should be different to map.")

self.orig_labels = orig_labels
self.target_labels = target_labels
self.dtype = get_equivalent_dtype(dtype, data_type=np.ndarray)
self.pair = tuple((o, t) for o, t in zip(self.orig_labels, self.target_labels) if o != t)
type_dtype = type(dtype)
if getattr(type_dtype, "__module__", "") == "torch":
self.use_numpy = False
self.dtype = get_equivalent_dtype(dtype, data_type=torch.Tensor)
else:
self.use_numpy = True
self.dtype = get_equivalent_dtype(dtype, data_type=np.ndarray)

def __call__(self, img: NdarrayOrTensor):
img_np, *_ = convert_data_type(img, np.ndarray)
img_flat = img_np.flatten()
try:
out_flat = np.array(img_flat, dtype=self.dtype)
except ValueError:
# can't copy unchanged labels as the expected dtype is not supported, must map all the label values
out_flat = np.zeros(shape=img_flat.shape, dtype=self.dtype)

for o, t in zip(self.orig_labels, self.target_labels):
if o == t:
continue
np.place(out_flat, img_flat == o, t)

reshaped = out_flat.reshape(img_np.shape)
out, *_ = convert_to_dst_type(src=reshaped, dst=img, dtype=self.dtype)
if self.use_numpy:
img_np, *_ = convert_data_type(img, np.ndarray)
_out_shape = img_np.shape
img_flat = img_np.flatten()
try:
out_flat = img_flat.astype(self.dtype)
except ValueError:
# can't copy unchanged labels as the expected dtype is not supported, must map all the label values
out_flat = np.zeros(shape=img_flat.shape, dtype=self.dtype)
for o, t in self.pair:
out_flat[img_flat == o] = t
out_t = out_flat.reshape(_out_shape)
else:
img_t, *_ = convert_data_type(img, torch.Tensor)
out_t = img_t.detach().clone().to(self.dtype) # type: ignore
for o, t in self.pair:
out_t[img_t == o] = t
out, *_ = convert_to_dst_type(src=out_t, dst=img, dtype=self.dtype)
return out


Expand Down
1 change: 1 addition & 0 deletions monai/transforms/utility/dictionary.py
Original file line number Diff line number Diff line change
Expand Up @@ -1523,6 +1523,7 @@ def __init__(
orig_labels: original labels that map to others.
target_labels: expected label values, 1: 1 map to the `orig_labels`.
dtype: convert the output data to dtype, default to float32.
if dtype is from PyTorch, the transform will use the pytorch backend, else with numpy backend.
allow_missing_keys: don't raise exception if key is missing.

"""
Expand Down
7 changes: 7 additions & 0 deletions tests/test_map_label_value.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,13 @@
p([2, 0, 0, 1]),
]
)
TESTS.append(
[
{"orig_labels": [1.5, 2.5, 3.5], "target_labels": [0, 1, 2], "dtype": torch.int8},
p([3.5, 1.5, 1.5, 2.5]),
p([2, 0, 0, 1]),
]
)
TESTS.extend(
[
[
Expand Down
16 changes: 14 additions & 2 deletions tests/test_map_label_valued.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,9 +14,11 @@
import unittest

import numpy as np
import torch
from parameterized import parameterized

from monai.transforms import MapLabelValued
from tests.utils import assert_allclose

TEST_CASE_1 = [
{"keys": "seg", "orig_labels": [3, 2, 1], "target_labels": [0, 1, 2]},
Expand Down Expand Up @@ -47,6 +49,11 @@
{"seg": np.array([3.5, 1.5, 1.5, 2.5])},
np.array([2, 0, 0, 1]),
]
TEST_CASE_5_1 = [
{"keys": "seg", "orig_labels": [1.5, 2.5, 3.5], "target_labels": [0, 1, 2], "dtype": torch.int8},
{"seg": torch.as_tensor([3.5, 1.5, 1.5, 2.5])},
torch.as_tensor([2.0, 0.0, 0.0, 1.0]),
]

TEST_CASE_6 = [
{"keys": "seg", "orig_labels": ["label3", "label2", "label1"], "target_labels": [0, 1, 2]},
Expand All @@ -62,10 +69,15 @@


class TestMapLabelValued(unittest.TestCase):
@parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6, TEST_CASE_7])
@parameterized.expand(
[TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_5_1, TEST_CASE_6, TEST_CASE_7]
)
def test_shape(self, input_param, input_data, expected_value):
result = MapLabelValued(**input_param)(input_data)
np.testing.assert_equal(result["seg"], expected_value)
if isinstance(expected_value, torch.Tensor):
assert_allclose(result["seg"], expected_value)
else:
np.testing.assert_equal(result["seg"], expected_value)
self.assertTupleEqual(result["seg"].shape, expected_value.shape)


Expand Down
Loading