-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
112 combining spatial transforms (#131)
* affine transforms * randomised affine and elastic deformation * add unit tests * add a 2D notebook demo * add speed demo
- Loading branch information
Showing
16 changed files
with
2,164 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,372 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Data loading pipeline examples\n", | ||
"\n", | ||
"The purpose of this notebook is to illustrate reading Nifti files and test speed of different methods." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"MONAI version: 0.0.1\n", | ||
"Python version: 3.5.6 |Anaconda, Inc.| (default, Aug 26 2018, 16:30:03) [GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)]\n", | ||
"Numpy version: 1.18.1\n", | ||
"Pytorch version: 1.4.0\n", | ||
"Ignite version: 0.3.0\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"%matplotlib inline\n", | ||
"\n", | ||
"import os\n", | ||
"import sys\n", | ||
"from glob import glob\n", | ||
"import tempfile\n", | ||
"\n", | ||
"import numpy as np\n", | ||
"import nibabel as nib\n", | ||
"\n", | ||
"\n", | ||
"import torch\n", | ||
"from torch.utils.data import DataLoader\n", | ||
"from torch.multiprocessing import Pool, Process, set_start_method\n", | ||
"try:\n", | ||
" set_start_method('spawn')\n", | ||
"except RuntimeError:\n", | ||
" pass\n", | ||
"\n", | ||
"sys.path.append('..') # assumes this is where MONAI is\n", | ||
"\n", | ||
"import monai\n", | ||
"from monai.transforms.compose import Compose\n", | ||
"from monai.data.nifti_reader import NiftiDataset\n", | ||
"from monai.transforms import (AddChannel, Rescale, ToTensor, \n", | ||
" UniformRandomPatch, Rotate, RandAffine)\n", | ||
"\n", | ||
"monai.config.print_config()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### 0. Preparing input data (nifti images)\n", | ||
"\n", | ||
"Create a number of test Nifti files, 3d single channel images with spatial size (256, 256, 256) voxels." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"tempdir = tempfile.mkdtemp()\n", | ||
"\n", | ||
"for i in range(5):\n", | ||
" im, seg = monai.data.synthetic.create_test_image_3d(256,256,256)\n", | ||
" \n", | ||
" n = nib.Nifti1Image(im, np.eye(4))\n", | ||
" nib.save(n, os.path.join(tempdir, 'im%i.nii.gz'%i))\n", | ||
" \n", | ||
" n = nib.Nifti1Image(seg, np.eye(4))\n", | ||
" nib.save(n, os.path.join(tempdir, 'seg%i.nii.gz'%i))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# prepare list of image names and segmentation names\n", | ||
"images = sorted(glob(os.path.join(tempdir,'im*.nii.gz')))\n", | ||
"segs = sorted(glob(os.path.join(tempdir,'seg*.nii.gz')))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### 1. Test image loading with minimal preprocessing" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"torch.Size([3, 1, 256, 256, 256]) torch.Size([3, 1, 256, 256, 256])\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"imtrans = Compose([\n", | ||
" AddChannel(),\n", | ||
" ToTensor()\n", | ||
"]) \n", | ||
"\n", | ||
"segtrans = Compose([\n", | ||
" AddChannel(),\n", | ||
" ToTensor()\n", | ||
"]) \n", | ||
" \n", | ||
"ds = NiftiDataset(images, segs, transform=imtrans, seg_transform=segtrans)\n", | ||
"loader = DataLoader(ds, batch_size=3, num_workers=8)\n", | ||
"\n", | ||
"im, seg = monai.utils.misc.first(loader)\n", | ||
"print(im.shape, seg.shape)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"5.11 s ± 207 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"%timeit data = next(iter(loader))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### 2. Test image-patch loading with CPU multi-processing:\n", | ||
"\n", | ||
"- rotate (256, 256, 256)-voxel in the plane axes=(1, 2)\n", | ||
"- extract random (64, 64, 64) patches\n", | ||
"- implemented in MONAI using ` scipy.ndimage.rotate`" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"torch.Size([3, 1, 64, 64, 64]) torch.Size([3, 1, 64, 64, 64])\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"images = sorted(glob(os.path.join(tempdir,'im*.nii.gz')))\n", | ||
"segs = sorted(glob(os.path.join(tempdir,'seg*.nii.gz')))\n", | ||
"\n", | ||
"imtrans = Compose([\n", | ||
" Rescale(),\n", | ||
" AddChannel(),\n", | ||
" Rotate(angle=45.),\n", | ||
" UniformRandomPatch((64, 64, 64)),\n", | ||
" ToTensor()\n", | ||
"]) \n", | ||
"\n", | ||
"segtrans = Compose([\n", | ||
" AddChannel(),\n", | ||
" Rotate(angle=45.),\n", | ||
" UniformRandomPatch((64, 64, 64)),\n", | ||
" ToTensor()\n", | ||
"]) \n", | ||
" \n", | ||
"ds = NiftiDataset(images, segs, transform=imtrans, seg_transform=segtrans)\n", | ||
"loader = DataLoader(ds, batch_size=3, num_workers=8, pin_memory=torch.cuda.is_available())\n", | ||
"\n", | ||
"im, seg = monai.utils.misc.first(loader)\n", | ||
"print(im.shape, seg.shape)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"10.3 s ± 175 ms per loop (mean ± std. dev. of 7 runs, 3 loops each)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"%timeit -n 3 data = next(iter(loader))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"(the above results were based on a 2.9 GHz 6-Core Intel Core i9)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### 3. Test image-patch loading with preprocessing on GPU:\n", | ||
"\n", | ||
"- random rotate (256, 256, 256)-voxel in the plane axes=(1, 2)\n", | ||
"- extract random (64, 64, 64) patches\n", | ||
"- implemented in MONAI using native pytorch resampling" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"torch.Size([3, 1, 64, 64, 64]) torch.Size([3, 1, 64, 64, 64])\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"images = sorted(glob(os.path.join(tempdir,'im*.nii.gz')))\n", | ||
"segs = sorted(glob(os.path.join(tempdir,'seg*.nii.gz')))\n", | ||
"\n", | ||
"# same parameter with different interpolation mode for image and segmentation\n", | ||
"rand_affine_img = RandAffine(prob=1.0, rotate_range=np.pi/4, translate_range=(96, 96, 96),\n", | ||
" spatial_size=(64, 64, 64), mode='bilinear',\n", | ||
" as_tensor_output=True, device=torch.device('cuda:0'))\n", | ||
"rand_affine_seg = RandAffine(prob=1.0, rotate_range=np.pi/4, translate_range=(96, 96, 96),\n", | ||
" spatial_size=(64, 64, 64), mode='nearest',\n", | ||
" as_tensor_output=True, device=torch.device('cuda:0'))\n", | ||
" \n", | ||
"imtrans = Compose([\n", | ||
" Rescale(),\n", | ||
" AddChannel(),\n", | ||
" rand_affine_img,\n", | ||
"]) \n", | ||
"\n", | ||
"segtrans = Compose([\n", | ||
" AddChannel(),\n", | ||
" rand_affine_seg,\n", | ||
"]) \n", | ||
" \n", | ||
"ds = NiftiDataset(images, segs, transform=imtrans, seg_transform=segtrans)\n", | ||
"loader = DataLoader(ds, batch_size=3, num_workers=0)\n", | ||
"\n", | ||
"im, seg = monai.utils.misc.first(loader)\n", | ||
"\n", | ||
"print(im.shape, seg.shape)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"1.42 s ± 1.72 ms per loop (mean ± std. dev. of 7 runs, 3 loops each)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"%timeit -n 3 data = next(iter(loader))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"TITAN Xp COLLECTORS EDITION\n", | ||
"|===========================================================================|\n", | ||
"| PyTorch CUDA memory summary, device ID 0 |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| CUDA OOMs: 0 | cudaMalloc retries: 0 |\n", | ||
"|===========================================================================|\n", | ||
"| Metric | Cur Usage | Peak Usage | Tot Alloc | Tot Freed |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| Allocated memory | 6144 KB | 156672 KB | 16680 MB | 16674 MB |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| Active memory | 6144 KB | 156672 KB | 16680 MB | 16674 MB |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| GPU reserved memory | 225280 KB | 225280 KB | 225280 KB | 0 B |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| Non-releasable memory | 14336 KB | 77824 KB | 11219 MB | 11205 MB |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| Allocations | 2 | 14 | 2222 | 2220 |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| Active allocs | 2 | 14 | 2222 | 2220 |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| GPU reserved segments | 8 | 8 | 8 | 0 |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| Non-releasable allocs | 1 | 6 | 1460 | 1459 |\n", | ||
"|===========================================================================|\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"print(torch.cuda.get_device_name(0))\n", | ||
"print(torch.cuda.memory_summary(0, abbreviated=True))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!rm -rf {tempdir}" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.5.6" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
Oops, something went wrong.