@@ -249,10 +249,12 @@ class SampleConsensusPrerejective : public Registration<PointSource, PointTarget
249
249
}
250
250
251
251
/* * \brief Set the number of threads to use.
252
- * \param nr_threads the number of hardware threads to use (0 sets the value back to automatic)
252
+ * \param nr_threads the number of hardware threads to use (0 sets the value back to
253
+ * automatic)
253
254
*/
254
255
void
255
- setNumberOfThreads (unsigned int nr_threads = 0 ) {
256
+ setNumberOfThreads (unsigned int nr_threads = 0 )
257
+ {
256
258
#ifdef _OPENMP
257
259
num_threads_ = nr_threads ? nr_threads : omp_get_num_procs ();
258
260
#else
@@ -305,28 +307,31 @@ class SampleConsensusPrerejective : public Registration<PointSource, PointTarget
305
307
const Eigen::Matrix4f& guess) override ;
306
308
307
309
/* * \brief Obtain the fitness of a transformation
308
- * The following metrics are calculated, based on
309
- * \b final_transformation_ and \b corr_dist_threshold_:
310
- * - Inliers: the number of transformed points which are closer than threshold to NN
311
- * - Error score: the MSE of the inliers
312
- * \param inliers indices of source point cloud inliers
313
- * \param fitness_score output fitness_score output fitness score as the MSE of the inliers
314
- */
315
- PCL_DEPRECATED (1 , 15 , " Please use `getFitness(final_transformation_, inliers)` instead" )
316
- void
317
- getFitness (std::vector<int >& inliers, float & fitness_score) const ;
310
+ * The following metrics are calculated, based on
311
+ * \b final_transformation_ and \b corr_dist_threshold_:
312
+ * - Inliers: the number of transformed points which are closer than threshold to NN
313
+ * - Error score: the MSE of the inliers
314
+ * \param inliers indices of source point cloud inliers
315
+ * \param fitness_score output fitness_score output fitness score as the MSE of the
316
+ * inliers
317
+ */
318
+ PCL_DEPRECATED (1 ,
319
+ 15 ,
320
+ " Please use `getFitness(final_transformation_, inliers)` instead" )
321
+ void
322
+ getFitness (std::vector<int >& inliers, float & fitness_score) const ;
318
323
319
324
/* * \brief Obtain the fitness of a transformation
320
- * The following metrics are calculated, based on
321
- * \b transformation and \b corr_dist_threshold_:
322
- * - Inliers: the number of transformed points which are closer than threshold to NN
323
- * - Error score: the MSE of the inliers
324
- * \param transformation transformation to be evaluated
325
- * \param inliers indices of source point cloud inliers
326
- * \return fitness_score fitness_score output fitness score as the MSE of the inliers
327
- */
325
+ * The following metrics are calculated, based on
326
+ * \b transformation and \b corr_dist_threshold_:
327
+ * - Inliers: the number of transformed points which are closer than threshold to NN
328
+ * - Error score: the MSE of the inliers
329
+ * \param transformation transformation to be evaluated
330
+ * \param inliers indices of source point cloud inliers
331
+ * \return fitness_score fitness_score output fitness score as the MSE of the inliers
332
+ */
328
333
float
329
- getFitness (const Eigen::Matrix4f& transformation, std::vector<int >& inliers) const ;
334
+ getFitness (const Eigen::Matrix4f& transformation, std::vector<int >& inliers) const ;
330
335
331
336
/* * \brief The source point cloud's feature descriptors. */
332
337
FeatureCloudConstPtr input_features_;
0 commit comments