-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7140324
commit 2ba714d
Showing
1 changed file
with
72 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
from typing import Dict, List, Union | ||
from sklearn.metrics import confusion_matrix | ||
import pandas as pd | ||
|
||
from matplotlib import pyplot as plt | ||
import seaborn as sn | ||
import torch | ||
import torchmetrics | ||
|
||
|
||
def calculate_f1_score( | ||
preds: Union[List, torch.Tensor], target: Union[List, torch.Tensor], average: str = "micro" | ||
): | ||
if type(preds) == list: | ||
preds = torch.as_tensor(preds) | ||
if type(target) == list: | ||
target = torch.as_tensor(target) | ||
|
||
number_of_classes = max(max(target).item(), max(preds).item()) + 1 | ||
score = torchmetrics.functional.f1_score( | ||
preds=preds, target=target, average=average, num_classes=number_of_classes | ||
).item() | ||
return score | ||
|
||
|
||
def get_cm_from_predictions( | ||
y_true: List, y_pred: List, encoding: Dict, normalize: str = "true" | ||
) -> pd.DataFrame: | ||
""" | ||
Set normalize to None to get absolute numbers. | ||
""" | ||
reverse_encoding = {v: k for k, v in encoding.items()} | ||
|
||
classes = [reverse_encoding[i] for i in set(y_pred).union(set(y_true))] | ||
|
||
cf_matrix = confusion_matrix(y_true, y_pred, normalize=normalize) | ||
|
||
df = pd.DataFrame( | ||
cf_matrix, | ||
index=classes, | ||
columns=classes, | ||
).round(2) | ||
return df | ||
|
||
|
||
def plot_and_save_dual_cm(df_A: pd.DataFrame, df_B: pd.DataFrame, save_to_file: str): | ||
""" | ||
Visualizes two confusion matrices next to each other. Input format of df_A and df_B matches | ||
output of 'get_cm_from_predictions'. | ||
""" | ||
|
||
fig, axes = plt.subplots(1, 2, figsize=(45, 20), constrained_layout=True) | ||
fig.suptitle("Confusion Matrices A & B", fontsize=30) | ||
|
||
sn.heatmap(df_A, annot=True, ax=axes[0]) | ||
sn.heatmap(df_B, annot=True, ax=axes[1]) | ||
axes[0].set_title("A", fontsize=25) | ||
axes[1].set_title("B", fontsize=25) | ||
axes[0].set_ylabel("True A", fontsize=20) | ||
axes[0].set_xlabel("Predicted A", fontsize=20) | ||
axes[1].set_ylabel("True B", fontsize=20) | ||
axes[1].set_xlabel("Predicted B", fontsize=20) | ||
axes[0].set_aspect("equal") | ||
axes[1].set_aspect("equal") | ||
|
||
plt.setp(axes[0].yaxis.get_majorticklabels(), rotation="horizontal") | ||
plt.setp(axes[1].yaxis.get_majorticklabels(), rotation="horizontal") | ||
plt.setp(axes[0].xaxis.get_majorticklabels(), rotation="vertical") | ||
plt.setp(axes[1].xaxis.get_majorticklabels(), rotation="vertical") | ||
|
||
fig.savefig(save_to_file, format="png") | ||
return fig |