Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
290 changes: 290 additions & 0 deletions Examples/example_performanceProfiling.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,290 @@
import gc
import os
import sys
import time as ostime
from argparse import ArgumentParser
from datetime import timedelta as delta
from glob import glob

import dask as da
import dask.array as daArray
import matplotlib.pyplot as plt
import numpy as np
import psutil

import parcels
from parcels import AdvectionRK4, FieldSet, JITParticle, ParticleSet

try:
from mpi4py import MPI
except:
MPI = None

with_GC = False
with_ChunkInfoPrint = False

global_t_0 = 0
global_m_0 = 0
global_samples = []
samplenr = 0
global_memory_step = []
global_time_steps = []
global_fds_step = []


class IterationCounter():
_iter = 0

@classmethod
def advance(self):
old_iter = self._iter
self._iter += 1
return old_iter


class PerformanceLog():
samples = []
times_steps = []
memory_steps = []
fds_steps = []
_iter = 0

def advance(self):
if MPI:
mpi_comm = MPI.COMM_WORLD
mpi_rank = mpi_comm.Get_rank()
process = psutil.Process(os.getpid())
mem_B_used = process.memory_info().rss
fds_open = len(process.open_files())
mem_B_used_total = mpi_comm.reduce(mem_B_used, op=MPI.SUM, root=0)
fds_open_total = mpi_comm.reduce(fds_open, op=MPI.SUM, root=0)
if mpi_rank == 0:
self.times_steps.append(ostime.time())
self.memory_steps.append(mem_B_used_total)
self.fds_steps.append(fds_open_total)
self.samples.append(self._iter)
self._iter += 1
else:
process = psutil.Process(os.getpid())
self.times_steps.append(ostime.time())
self.memory_steps.append(process.memory_info().rss)
self.fds_steps.append(len(process.open_files()))
self.samples.append(self._iter)
self._iter += 1


def set_cmems_fieldset(cs, deferLoadFlag=True, periodicFlag=False):
ddir_head = "/data/oceanparcels/input_data"
ddir = os.path.join(ddir_head, "CMEMS/GLOBAL_REANALYSIS_PHY_001_030/")
files = sorted(glob(ddir+"mercatorglorys12v1_gl12_mean_201607*.nc"))
variables = {'U': 'uo', 'V': 'vo'}
dimensions = {'lon': 'longitude', 'lat': 'latitude', 'time': 'time'}

if cs not in ['auto', False]:
# cs = (1, cs, cs) # == OLD initialization as tuple. Advised to rather use a dictionary. ==#
cs = {dimensions['time']: 1, dimensions['lon']: cs, dimensions['lat']: cs}
if periodicFlag:
return FieldSet.from_netcdf(files, variables, dimensions, time_periodic=delta(days=30), deferred_load=deferLoadFlag, field_chunksize=cs)
else:
return FieldSet.from_netcdf(files, variables, dimensions, allow_time_extrapolation=True, deferred_load=deferLoadFlag, field_chunksize=cs)


def print_field_info(fieldset):
for f in fieldset.get_fields():
if type(f) in [parcels.VectorField, parcels.NestedField, parcels.SummedField] or not f.grid.defer_load:
continue
if isinstance(f.data, daArray.core.Array):
sys.stdout.write(f"Array of Field[name={f.name}] is dask.Array\n")
sys.stdout.write(
"Chunk info of Field[name={}]: field.nchunks={}; shape(field.data.nchunks)={}; field.data.numblocks={}; shape(f.data)={}\n".format(
f.name, f.nchunks, (len(f.data.chunks[0]), len(f.data.chunks[1]), len(f.data.chunks[2])),
f.data.numblocks, f.data.shape))
sys.stdout.write("Chunk info of Grid[field.name={}]: g.chunk_info={}; g.load_chunk={}; len(g.load_chunk)={}\n".format(
f.name, f.grid.chunk_info, f.grid.load_chunk, len(f.grid.load_chunk)))


def plot(x, times, memory_used, nfiledescriptors, imageFilePath):
plot_t = []
for i in range(len(times)):
if i == 0:
plot_t.append(times[i]-global_t_0)
else:
plot_t.append(times[i]-times[i-1])
mem_scaler = (1*10)/(1024*1024*1024)
plot_mem = []
for i in range(len(memory_used)):
plot_mem.append(memory_used[i] * mem_scaler)

fig, ax = plt.subplots(1, 1, figsize=(15, 12))
ax.plot(x, plot_t, 'o-', label="time_spent [s]")
ax.plot(x, plot_mem, 'x-', label="memory_used [100 MB]")
ax.plot(x, nfiledescriptors, '.-', label="open_files [#]")
plt.ylim([0, 50])
plt.legend()
ax.set_xlabel('iteration')
plt.savefig(os.path.join(odir, imageFilePath), dpi=300, format='png')


def LogMemTimeFds():
if MPI:
mpi_comm = MPI.COMM_WORLD
mpi_rank = mpi_comm.Get_rank()
process = psutil.Process(os.getpid())
mem_B_used = process.memory_info().rss
fds_open = len(psutil.Process().open_files())
mem_B_used_total = mpi_comm.reduce(mem_B_used, op=MPI.SUM, root=0)
fds_open_total = mpi_comm.reduce(fds_open, op=MPI.SUM, root=0)
if mpi_rank == 0:
global_time_steps.append(ostime.time())
global_memory_step.append(mem_B_used_total)
global_fds_step.append(fds_open_total)
global_samples.append(IterationCounter.advance())
else:
process = psutil.Process(os.getpid())
global_time_steps.append(ostime.time())
global_memory_step.append(process.memory_info().rss)
global_fds_step.append(len(psutil.Process().open_files()))


def perIterGC():
gc.collect()


if __name__ == '__main__':
field_chunksize = 1
do_chunking = False
auto_chunking = False
imageFileName = ""
parser = ArgumentParser(description="Example of particle advection around an idealised peninsula")
parser.add_argument("-f", "--fieldsize", dest="fieldsize", type=int, default=1, help="size of each field chunk")
parser.add_argument("-c", "--do-chunking", dest="do_chunking", action='store_true', default=False, help="enable/disable field chunking")
parser.add_argument("-a", "--auto-chunking", dest="auto_chunking", action='store_true', default=False, help="enable/disable auto-chunking")
parser.add_argument("-i", "--imageFileName", dest="imageFileName", type=str, default="mpiChunking_plot_MPI.png", help="image file name of the plot")
parser.add_argument("-b", "--backwards", dest="backwards", action='store_true', default=False, help="enable/disable running the simulation backwards")
parser.add_argument("-d", "--defer", dest="defer", action='store_false', default=True, help="enable/disable running with deferred load (default: True)")
parser.add_argument("-p", "--periodic", dest="periodic", action='store_true', default=False, help="enable/disable periodic wrapping (else: extrapolation)")
parser.add_argument("-r", "--repeatdt", dest="repeatdt", action='store_true', default=False, help="continuously add particles via repeatdt (default: False)")
args = parser.parse_args()

auto_chunking = args.auto_chunking
do_chunking = args.do_chunking
if auto_chunking:
do_chunking = True
elif do_chunking:
field_chunksize = args.fieldsize
imageFileName = args.imageFileName
deferLoadFlag = args.defer
periodicFlag = args.periodic
backwardSimulation = args.backwards
repeatdtFlag = args.repeatdt

odir = "/scratch/{}/experiments".format(os.environ['USER'])
func_time = []
mem_used_GB = []
open_fds = []
auto_field_size = 0
if MPI:
mpi_comm = MPI.COMM_WORLD
mpi_rank = mpi_comm.Get_rank()
mpi_size = mpi_comm.Get_size()
if mpi_rank == 0:
print(f"MPI - # workers: {mpi_size}\n")
print("Dask global config - array.chunk-size: {}\n".format(da.config.get('array.chunk-size')))
else:
print("Dask global config - array.chunk-size: {}\n".format(da.config.get('array.chunk-size')))

if not do_chunking:
fieldset = set_cmems_fieldset(False, deferLoadFlag, periodicFlag)
elif auto_chunking:
fieldset = set_cmems_fieldset('auto', deferLoadFlag, periodicFlag)
else:
fieldset = set_cmems_fieldset(field_chunksize, deferLoadFlag, periodicFlag)

if MPI:
mpi_comm = MPI.COMM_WORLD
mpi_rank = mpi_comm.Get_rank()
process = psutil.Process(os.getpid())
if mpi_rank == 0:
global_t_0 = ostime.time()
global_m_0 = process.memory_info().rss
else:
process = psutil.Process(os.getpid())
global_t_0 = ostime.time()
global_m_0 = process.memory_info().rss

if with_ChunkInfoPrint:
if MPI:
mpi_comm = MPI.COMM_WORLD
mpi_comm.Barrier()
if mpi_comm.Get_rank() > 0:
pass
else:
print_field_info(fieldset)
else:
print_field_info()

simStart = None
for f in fieldset.get_fields():
if type(f) in [parcels.VectorField, parcels.NestedField, parcels.SummedField]:
continue
else:
if backwardSimulation:
simStart = f.grid.time_full[-1]
else:
simStart = f.grid.time_full[0]
break

if backwardSimulation:
# ==== backward simulation ==== #
if repeatdtFlag:
pset = ParticleSet(fieldset=fieldset, pclass=JITParticle, lon=np.random.rand(96, 1) * 1e-5, lat=np.random.rand(96, 1) * 1e-5, time=simStart, repeatdt=delta(hours=1))
else:
pset = ParticleSet(fieldset=fieldset, pclass=JITParticle, lon=np.random.rand(96, 1) * 1e-5, lat=np.random.rand(96, 1) * 1e-5, time=simStart)
else:
# ==== forward simulation ==== #
if repeatdtFlag:
pset = ParticleSet(fieldset=fieldset, pclass=JITParticle, lon=np.random.rand(96, 1) * 1e-5, lat=np.random.rand(96, 1) * 1e-5, repeatdt=delta(hours=1))
else:
pset = ParticleSet(fieldset=fieldset, pclass=JITParticle, lon=np.random.rand(96, 1) * 1e-5, lat=np.random.rand(96, 1) * 1e-5)

perflog = PerformanceLog()
postProcessFuncs = [perflog.advance, ]
if with_GC:
postProcessFuncs.append(perIterGC)

if backwardSimulation:
# ==== backward simulation ==== #
pset.execute(AdvectionRK4, runtime=delta(days=33), dt=delta(hours=-1), postIterationFunctions=postProcessFuncs)
else:
# ==== forward simulation ==== #
pset.execute(AdvectionRK4, runtime=delta(days=33), dt=delta(hours=1), postIterationFunctions=postProcessFuncs)

if auto_chunking:
if MPI:
mpi_comm = MPI.COMM_WORLD
mpi_rank = mpi_comm.Get_rank()
if mpi_rank == 0:
for f in fieldset.get_fields():
if type(f) in [parcels.VectorField, parcels.NestedField,
parcels.SummedField] or not f.grid.defer_load:
continue
chunk_info = f.grid.chunk_info
auto_field_size = chunk_info[chunk_info[0] + 1]
break
else:
for f in fieldset.get_fields():
if type(f) in [parcels.VectorField, parcels.NestedField, parcels.SummedField] or not f.grid.defer_load:
continue
chunk_info = f.grid.chunk_info
auto_field_size = chunk_info[chunk_info[0]+1]
break

if MPI:
mpi_comm = MPI.COMM_WORLD
mpi_comm.Barrier()
if mpi_comm.Get_rank() > 0:
pass
else:
plot(perflog.samples, perflog.times_steps, perflog.memory_steps, perflog.fds_steps, os.path.join(odir, imageFileName))
else:
plot(perflog.samples, perflog.times_steps, perflog.memory_steps, perflog.fds_steps, os.path.join(odir, imageFileName))