Skip to content

Commit

Permalink
[PaddlePaddle]Remove multi gpu training (d2l-ai#1205)
Browse files Browse the repository at this point in the history
* Remove multi gpu training

* Try to Add return list for avoiding runtime error

* Set num_workers to 0

* Remove numbers of fcn.md

* Fix natural-language-inference-attention.md&bert-pretraining.md
  • Loading branch information
吴高升 authored Sep 8, 2022
1 parent 8dc2236 commit 390b546
Show file tree
Hide file tree
Showing 10 changed files with 94 additions and 21 deletions.
24 changes: 22 additions & 2 deletions chapter_computer-vision/fcn.md
Original file line number Diff line number Diff line change
Expand Up @@ -300,11 +300,31 @@ net.transpose_conv.weight.set_value(W);
指定随机裁剪的输出图像的形状为$320\times 480$:高和宽都可以被$32$整除。

```{.python .input}
#@tab all
#@tab mxnet, pytorch
batch_size, crop_size = 32, (320, 480)
train_iter, test_iter = d2l.load_data_voc(batch_size, crop_size)
```

```{.python .input}
#@tab paddle
import os
def load_data_voc(batch_size, crop_size):
"""加载VOC语义分割数据集
Defined in :numref:`sec_semantic_segmentation`"""
voc_dir = d2l.download_extract('voc2012', os.path.join(
'VOCdevkit', 'VOC2012'))
train_iter = paddle.io.DataLoader(
d2l.VOCSegDataset(True, crop_size, voc_dir), batch_size=batch_size,
shuffle=True, return_list=True, drop_last=True, num_workers=0)
test_iter = paddle.io.DataLoader(
d2l.VOCSegDataset(False, crop_size, voc_dir), batch_size=batch_size,
drop_last=True, return_list=True, num_workers=0)
return train_iter, test_iter
batch_size, crop_size = 32, (320, 480)
train_iter, test_iter = load_data_voc(batch_size, crop_size)
```

## [**训练**]

现在我们可以训练全卷积网络了。
Expand Down Expand Up @@ -337,7 +357,7 @@ def loss(inputs, targets):
num_epochs, lr, wd, devices = 5, 0.001, 1e-3, d2l.try_all_gpus()
trainer = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters(), weight_decay=wd)
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices[:1])
```

## [**预测**]
Expand Down
4 changes: 2 additions & 2 deletions chapter_computer-vision/object-detection-dataset.md
Original file line number Diff line number Diff line change
Expand Up @@ -203,9 +203,9 @@ def load_data_bananas(batch_size):
def load_data_bananas(batch_size):
"""加载香蕉检测数据集"""
train_iter = paddle.io.DataLoader(BananasDataset(is_train=True),
batch_size=batch_size, shuffle=True)
batch_size=batch_size, return_list=True, shuffle=True)
val_iter = paddle.io.DataLoader(BananasDataset(is_train=False),
batch_size=batch_size)
batch_size=batch_size, return_list=True)
return train_iter, val_iter
```

Expand Down
5 changes: 3 additions & 2 deletions chapter_computer-vision/semantic-segmentation-and-dataset.md
Original file line number Diff line number Diff line change
Expand Up @@ -472,6 +472,7 @@ for X, Y in train_iter:
batch_size = 64
train_iter = paddle.io.DataLoader(voc_train, batch_size=batch_size, shuffle=True,
drop_last=True,
return_list=True,
num_workers=d2l.get_dataloader_workers())
for X, Y in train_iter:
print(X.shape)
Expand Down Expand Up @@ -527,10 +528,10 @@ def load_data_voc(batch_size, crop_size):
num_workers = d2l.get_dataloader_workers()
train_iter = paddle.io.DataLoader(
VOCSegDataset(True, crop_size, voc_dir), batch_size=batch_size,
shuffle=True, drop_last=True, num_workers=num_workers)
shuffle=True, return_list=True, drop_last=True, num_workers=num_workers)
test_iter = paddle.io.DataLoader(
VOCSegDataset(False, crop_size, voc_dir), batch_size=batch_size,
drop_last=True, num_workers=num_workers)
drop_last=True, return_list=True, num_workers=num_workers)
return train_iter, test_iter
```

Expand Down
3 changes: 2 additions & 1 deletion chapter_linear-networks/linear-regression-concise.md
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,8 @@ def load_array(data_arrays, batch_size, is_train=True):
"""构造一个Paddle数据迭代器"""
dataset = paddle.io.TensorDataset(data_arrays)
return paddle.io.DataLoader(dataset, batch_size=batch_size,
shuffle=is_train)
shuffle=is_train,
return_list=True)
```

```{.python .input}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -373,11 +373,37 @@ class DecomposableAttention(nn.Layer):
我们使用 :numref:`sec_natural-language-inference-and-dataset`中定义的函数下载并读取SNLI数据集。批量大小和序列长度分别设置为$256$和$50$。

```{.python .input}
#@tab all
#@tab mxnet, pytorch
batch_size, num_steps = 256, 50
train_iter, test_iter, vocab = d2l.load_data_snli(batch_size, num_steps)
```

```{.python .input}
#@tab paddle
def load_data_snli(batch_size, num_steps=50):
"""下载SNLI数据集并返回数据迭代器和词表
Defined in :numref:`sec_natural-language-inference-and-dataset`"""
data_dir = d2l.download_extract('SNLI')
train_data = d2l.read_snli(data_dir, True)
test_data = d2l.read_snli(data_dir, False)
train_set = d2l.SNLIDataset(train_data, num_steps)
test_set = d2l.SNLIDataset(test_data, num_steps, train_set.vocab)
train_iter = paddle.io.DataLoader(train_set,batch_size=batch_size,
shuffle=True,
num_workers=0,
return_list=True)
test_iter = paddle.io.DataLoader(test_set, batch_size=batch_size,
shuffle=False,
num_workers=0,
return_list=True)
return train_iter, test_iter, train_set.vocab
batch_size, num_steps = 256, 50
train_iter, test_iter, vocab = load_data_snli(batch_size, num_steps)
```

### 创建模型

我们使用预训练好的100维GloVe嵌入来表示输入词元。我们将向量$\mathbf{a}_i$和$\mathbf{b}_j$在 :eqref:`eq_nli_e`中的维数预定义为100。 :eqref:`eq_nli_e`中的函数$f$和 :eqref:`eq_nli_v_ab`中的函数$g$的输出维度被设置为200.然后我们创建一个模型实例,初始化它的参数,并加载GloVe嵌入来初始化输入词元的向量。
Expand Down Expand Up @@ -447,7 +473,7 @@ lr, num_epochs = 0.001, 4
trainer = paddle.optimizer.Adam(learning_rate=lr, parameters=net.parameters())
loss = nn.CrossEntropyLoss(reduction="none")
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
devices)
devices[:1])
```

### 使用模型
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -399,7 +399,7 @@ def load_data_wiki(batch_size, max_len):
data_dir = d2l.download_extract('wikitext-2', 'wikitext-2')
paragraphs = _read_wiki(data_dir)
train_set = _WikiTextDataset(paragraphs, max_len)
train_iter = paddle.io.DataLoader(dataset=train_set, batch_size=batch_size,
train_iter = paddle.io.DataLoader(dataset=train_set, batch_size=batch_size, return_list=True,
shuffle=True, num_workers=num_workers)
return train_iter, train_set.vocab
```
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -29,11 +29,28 @@ from d2l import paddle as d2l
首先,我们加载WikiText-2数据集作为小批量的预训练样本,用于遮蔽语言模型和下一句预测。批量大小是512,BERT输入序列的最大长度是64。注意,在原始BERT模型中,最大长度是512。

```{.python .input}
#@tab all
#@tab mxnet, pytorch
batch_size, max_len = 512, 64
train_iter, vocab = d2l.load_data_wiki(batch_size, max_len)
```

```{.python .input}
#@tab paddle
def load_data_wiki(batch_size, max_len):
"""加载WikiText-2数据集
Defined in :numref:`subsec_prepare_mlm_data`"""
data_dir = d2l.download_extract('wikitext-2', 'wikitext-2')
paragraphs = d2l._read_wiki(data_dir)
train_set = d2l._WikiTextDataset(paragraphs, max_len)
train_iter = paddle.io.DataLoader(dataset=train_set, batch_size=batch_size, return_list=True,
shuffle=True, num_workers=0)
return train_iter, train_set.vocab
batch_size, max_len = 512, 64
train_iter, vocab = load_data_wiki(batch_size, max_len)
```

## 预训练BERT

原始BERT :cite:`Devlin.Chang.Lee.ea.2018`有两个不同模型尺寸的版本。基本模型($\text{BERT}_{\text{BASE}}$)使用12层(Transformer编码器块),768个隐藏单元(隐藏大小)和12个自注意头。大模型($\text{BERT}_{\text{LARGE}}$)使用24层,1024个隐藏单元和16个自注意头。值得注意的是,前者有1.1亿个参数,后者有3.4亿个参数。为了便于演示,我们定义了一个小的BERT,使用了2层、128个隐藏单元和2个自注意头。
Expand Down Expand Up @@ -257,10 +274,15 @@ def train_bert(train_iter, net, loss, vocab_size, devices, num_steps):
在预训练过程中,我们可以绘制出遮蔽语言模型损失和下一句预测损失。

```{.python .input}
#@tab all
#@tab mxnet, pytorch
train_bert(train_iter, net, loss, len(vocab), devices, 50)
```

```{.python .input}
#@tab paddle
train_bert(train_iter, net, loss, len(vocab), devices[:1], 50)
```

## 用BERT表示文本

在预训练BERT之后,我们可以用它来表示单个文本、文本对或其中的任何词元。下面的函数返回`tokens_a``tokens_b`中所有词元的BERT(`net`)表示。
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -366,7 +366,7 @@ def load_data_ptb(batch_size, max_window_size, num_noise_words):
dataset = PTBDataset(all_centers, all_contexts, all_negatives)
data_iter = paddle.io.DataLoader(
dataset, batch_size=batch_size, shuffle=True,
dataset, batch_size=batch_size, shuffle=True, return_list=True,
collate_fn=batchify, num_workers=num_workers)
return data_iter, vocab
```
Expand Down
17 changes: 10 additions & 7 deletions d2l/paddle.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,8 @@ def load_array(data_arrays, batch_size, is_train=True):
Defined in :numref:`sec_linear_concise`"""
dataset = paddle.io.TensorDataset(data_arrays)
return paddle.io.DataLoader(dataset, batch_size=batch_size,
shuffle=is_train)
shuffle=is_train,
return_list=True)

def get_fashion_mnist_labels(labels):
"""返回Fashion-MNIST数据集的文本标签
Expand Down Expand Up @@ -207,9 +208,11 @@ def load_data_fashion_mnist(batch_size, resize=None):
return (paddle.io.DataLoader(dataset=mnist_train,
batch_size=batch_size,
shuffle=True,
return_list=True,
num_workers=get_dataloader_workers()),
paddle.io.DataLoader(dataset=mnist_test,
batch_size=batch_size,
return_list=True,
shuffle=True,
num_workers=get_dataloader_workers()))

Expand Down Expand Up @@ -1852,9 +1855,9 @@ def load_data_bananas(batch_size):
Defined in :numref:`sec_object-detection-dataset`"""
train_iter = paddle.io.DataLoader(BananasDataset(is_train=True),
batch_size=batch_size, shuffle=True)
batch_size=batch_size, return_list=True, shuffle=True)
val_iter = paddle.io.DataLoader(BananasDataset(is_train=False),
batch_size=batch_size)
batch_size=batch_size, return_list=True)
return train_iter, val_iter

d2l.DATA_HUB['voc2012'] = (d2l.DATA_URL + 'VOCtrainval_11-May-2012.tar',
Expand Down Expand Up @@ -1964,10 +1967,10 @@ def load_data_voc(batch_size, crop_size):
num_workers = d2l.get_dataloader_workers()
train_iter = paddle.io.DataLoader(
VOCSegDataset(True, crop_size, voc_dir), batch_size=batch_size,
shuffle=True, drop_last=True, num_workers=num_workers)
shuffle=True, return_list=True, drop_last=True, num_workers=num_workers)
test_iter = paddle.io.DataLoader(
VOCSegDataset(False, crop_size, voc_dir), batch_size=batch_size,
drop_last=True, num_workers=num_workers)
drop_last=True, return_list=True, num_workers=num_workers)
return train_iter, test_iter

d2l.DATA_HUB['cifar10_tiny'] = (d2l.DATA_URL + 'kaggle_cifar10_tiny.zip',
Expand Down Expand Up @@ -2162,7 +2165,7 @@ def __len__(self):
dataset = PTBDataset(all_centers, all_contexts, all_negatives)

data_iter = paddle.io.DataLoader(
dataset, batch_size=batch_size, shuffle=True,
dataset, batch_size=batch_size, shuffle=True, return_list=True,
collate_fn=batchify, num_workers=num_workers)
return data_iter, vocab

Expand Down Expand Up @@ -2474,7 +2477,7 @@ def load_data_wiki(batch_size, max_len):
data_dir = d2l.download_extract('wikitext-2', 'wikitext-2')
paragraphs = _read_wiki(data_dir)
train_set = _WikiTextDataset(paragraphs, max_len)
train_iter = paddle.io.DataLoader(dataset=train_set, batch_size=batch_size,
train_iter = paddle.io.DataLoader(dataset=train_set, batch_size=batch_size, return_list=True,
shuffle=True, num_workers=num_workers)
return train_iter, train_set.vocab

Expand Down
2 changes: 1 addition & 1 deletion static/build.yml
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,6 @@ dependencies:
- -f https://download.pytorch.org/whl/torch_stable.html
- tensorflow==2.9.1
- tensorflow-probability==0.17.0
- paddlepaddle-gpu==2.3.1.post112
- paddlepaddle-gpu==2.3.2.post112
- -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
- opencv-python==4.6.0.66

0 comments on commit 390b546

Please sign in to comment.