Skip to content

🚀 Train Custom Data Tutorial 自定义数据集训练教程 🚀 #43

Closed
@nemonameless

Description

Train Custom Data Tutorial (English version)

Note:The Chinese version of the tutorial is located in the second reply below. 中文版教程请看下面第二条回复。

0. Examples

The PaddleDetection team provides various feature detection models based on PP-YOLOE , which can also be used as a reference to modify on your custom dataset. Please refer to PP-YOLOE application, pphuman, ppvehicle, visdrone and smalldet.

Scenarios Related Datasets Links
Agriculture Embrapa WGISD application
Low light ExDark application
Industry PCB Flaw PKU-Market-PCB application
Pedestrian CrowdHuman pphuman
Vehicle BDD100K, UA-DETRAC ppvehicle
VisDrone VisDrone-DET visdrone
Small Object DOTA, xView smalldet

PaddleDetection also provides various YOLO models for VOC dataset , which can also be used as a reference to modify on your custom dataset. Please refer to voc.

1. Custom data preparation:

1.For the annotation of custom dataset, please refer to DetAnnoTools;

2.For training preparation of custom dataset,please refer to PrepareDataSet.

Note:

2. Run script

model_type=ppyoloe # modify to 'yolov7'
job_name=ppyoloe_plus_crn_s_80e_coco # modify to 'yolov7_tiny_300e_coco'

config=configs/${model_type}/${job_name}.yml
log_dir=log_dir/${job_name}
# weights=https://bj.bcebos.com/v1/paddledet/models/${job_name}.pdparams
weights=output/${job_name}/model_final.pdparams

# 1.training(single GPU / multi GPU)
# CUDA_VISIBLE_DEVICES=0 python tools/train.py -c ${config} --eval --amp
python -m paddle.distributed.launch --log_dir=${log_dir} --gpus 0,1,2,3,4,5,6,7 tools/train.py -c ${config} --eval --amp

# 2.eval
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c ${config} -o weights=${weights} --classwise

# 3.infer
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c ${config} -o weights=${weights} --infer_img=demo/000000014439_640x640.jpg --draw_threshold=0.5

# 4.export
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c ${config} -o weights=${weights} # exclude_nms=True trt=True

# 5.deploy infer
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/${job_name} --image_file=demo/000000014439_640x640.jpg --device=GPU

# 6.deploy speed
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/${job_name} --image_file=demo/000000014439_640x640.jpg --device=GPU --run_benchmark=True # --run_mode=trt_fp16

# 7.export onnx
paddle2onnx --model_dir output_inference/${job_name} --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ${job_name}.onnx

# 8.onnx speed
/usr/local/TensorRT-8.0.3.4/bin/trtexec --onnx=${job_name}.onnx --workspace=4096 --avgRuns=10 --shapes=input:1x3x640x640 --fp16

Note:

  • Write the above commands in a script file, such as run.sh, and run as:sh run.sh. You can also run the command line sentence by sentence.
  • If you want to switch models, just modify the first two lines, such as:
    model_type=yolov7
    job_name=yolov7_tiny_300e_coco
    
  • For FLOPs(G) and Params(M), you should first install PaddleSlim, pip install paddleslim, then set print_flops: True and print_params: True in runtime.yml. Make sure single scale like 640x640.

3. Fintune for training:

In addition to changing the path of the dataset, it is generally recommended to load the COCO pre training weight of the corresponding model to fintune, which will converge faster and achieve higher accuracy, such as:

# fintune with single GPU:
# CUDA_VISIBLE_DEVICES=0 python tools/train.py -c ${config} --eval --amp -o pretrain_weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams

# fintune with multi GPU:
python -m paddle.distributed.launch --log_dir=./log_dir --gpus 0,1,2,3,4,5,6,7 tools/train.py -c ${config} --eval --amp -o pretrain_weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams

Note:

  • The fintune training will show that the channels of the last layer of the head classification branch is not matched, which is a normal situation, because the number of custom dataset is generally inconsistent with that of COCO dataset;
  • In general, the number of epochs for fintune training can be set less, and the lr setting is also smaller, such as 1/10. The highest accuracy may occur in one of the middle epochs;

4. Predict and export:

When using custom dataset to predict and export models, if the path of the TestDataset dataset is set incorrectly, COCO 80 categories will be used by default.

In addition to the correct path setting of the TestDataset dataset, you can also modify and add the corresponding label_list. Txt file (one category is recorded in one line), and anno_path in TestDataset can also be set as an absolute path, such as:

TestDataset:
  !ImageFolder
    anno_path: label_list.txt # if not set dataset_dir, the anno_path will be relative path of PaddleDetection root directory
    # dataset_dir: dataset/my_coco # if set dataset_dir, the anno_path will be dataset_dir/anno_path

one line in label_list.txt records a corresponding category:

person
vehicle

Metadata

Assignees

Labels

documentationImprovements or additions to documentation

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions