Skip to content

PaddleSeg v2.2.0

Compare
Choose a tag to compare
@nepeplwu nepeplwu released this 13 Jul 13:07
· 73 commits to release/2.2 since this release

新特性

  • CVPR 2021 AutoNUE语义分割赛道 冠军方案 开源!
  • 全新开源的超轻量级人像分割模型PPSeg,基于自采的大规模半身人像数据训练,适用于 视频会议 等半身像场景
  • 新增交互式分割应用场景,基于seed-based SOTA模型RITM 提供了基于 人像COCO+LVIS 训练的权重
  • 全新发布的交互式分割工具EISeg,可用于快速标注数据
  • 新增人像分割领域的经典模型 PortraitNet,新增Transformer系列 SOTA模型 SwinTransformer
  • 优化模型预测的后处理逻辑,提升模型预测精度

问题修复

  • #1123 修复模型剪枝时内存不足的问题
  • #1100 修复CrossEntropyLoss 使用 weight权重时训练无法收敛的问题
  • #1082 修复模型剪枝脚本运行失败的问题
  • #1081 修复了Windows系统下预测脚本输出保存路径不正确的问题
  • #1078 修复多卡训练模型时DataLoader未设置work_init_fn导致多进程中所使用同样的random seed的问题
  • #34c1bbf#30860e 修复DecoupledSegNet和SFNet导出失败的问题

致谢


New Features

  • CVPR 2021 AutoNUE Semantic Segmentation Track Technical Report is open sourced!
  • An ultra-lightweight portrait segmentation model named PPSeg is open sourced, which is training based on large-scale portrait data and suitable for video conference
  • We provide interactive segmentation application scenarios, based on the seed-based SOTA model RITM and also provide weights training on portrait and COCO+LVIS.
  • A newly released interactive segmentation tool EISeg can be used to quickly label data
  • Added the popular model PortraitNet in the field of portrait segmentation, and added the Transformer series SOTA model SwinTransformer
  • We optimize the post-processing logic of model prediction to improve model prediction accuracy

Bug Fix

  • #1123 Fix the problem of insufficient memory during model pruning
  • #1100 Fix the problem that the weighted CrossEntropyLoss cannot converge during training
  • #1082 Fix the problem that the model pruning script fails to run
  • #1081 Fix the problem that the save path of the prediction script under Windows system is incorrect
  • #1078 Fix an issue where the DataLoader did not set work_init_fn when training the model in multi-card, which caused the same random seed to be used in multiple processes
  • #34c1bbf/#30860e Fix the problem that DecoupledSegNet and SFNet cannot be successfully exported

Thanks