Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Add ESPNetV1 #1625

Merged
merged 14 commits into from
Dec 28, 2021
14 changes: 14 additions & 0 deletions configs/espnetv1/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
# ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation


## Reference

> Mehta Sachin, Mohammad Rastegari, Anat Caspi, Linda Shapiro, and Hannaneh Hajishirzi. "ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation.".In Proceedings of the European Conference on Computer Vision, pp. 552-568. 2018.

## Performance

### Cityscapes

| Model | Backbone | Resolution | Training Iters | mIoU | mIoU (flip) | mIoU (ms+flip) | Links |
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|ESPNetV2|-|1024x512|120000|61.82%|62.20%|62.89%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/espnetv1_cityscapes_1024x512_120k/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/espnetv1_cityscapes_1024x512_120k/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=472e91a0600420c99a0dc3a1e6f80f87)
28 changes: 28 additions & 0 deletions configs/espnetv1/espnetv1_cityscapes_1024x512_120k.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
_base_: '../_base_/cityscapes.yml'

batch_size: 4
iters: 120000

optimizer:
_inherited_: False
type: adam
weight_decay: 0.0002

lr_scheduler:
type: PolynomialDecay
learning_rate: 0.001
end_lr: 0.0
power: 0.9

loss:
types:
- type: CrossEntropyLoss
weight: [2.79834108 ,6.92945723 ,3.84068512 ,9.94349362 ,9.77098823 ,9.51484 ,10.30981624 ,9.94307377 ,4.64933892 ,9.55759938 ,7.86692178 ,9.53126629 ,10.3496365 ,6.67234062 ,10.26054204 ,10.28785275 ,10.28988296 ,10.40546021 ,10.13848367]
coef: [1]

model:
type: ESPNetV1
in_channels: 3
num_classes: 19
level2_depth: 2
level3_depth: 8
1 change: 1 addition & 0 deletions paddleseg/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,3 +49,4 @@
from .hrnet_contrast import HRNetW48Contrast
from .espnet import ESPNetV2
from .dmnet import DMNet
from .espnetv1 import ESPNetV1
308 changes: 308 additions & 0 deletions paddleseg/models/espnetv1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,308 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddleseg.models import layers
from paddleseg.cvlibs import manager
from paddleseg.utils import utils


@manager.MODELS.add_component
class ESPNetV1(nn.Layer):
"""
The ESPNetV1 implementation based on PaddlePaddle.

The original article refers to
Sachin Mehta1, Mohammad Rastegari, Anat Caspi, Linda Shapiro, and Hannaneh Hajishirzi. "ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation"
(https://arxiv.org/abs/1803.06815).

Args:
shiyutang marked this conversation as resolved.
Show resolved Hide resolved
num_classes (int): The unique number of target classes.
in_channels (int, optional): Number of input channels. Default: 3.
level2_depth (int, optional): Depth of DilatedResidualBlock. Default: 2.
level3_depth (int, optional): Depth of DilatedResidualBlock. Default: 3.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self,
num_classes,
in_channels=3,
level2_depth=2,
level3_depth=3,
pretrained=None):
super().__init__()
self.encoder = ESPNetEncoder(num_classes, in_channels, level2_depth,
level3_depth)

self.level3_up = nn.Conv2DTranspose(num_classes,
num_classes,
2,
stride=2,
padding=0,
output_padding=0,
bias_attr=False)
self.br3 = layers.SyncBatchNorm(num_classes)
self.level2_proj = nn.Conv2D(in_channels + 128,
num_classes,
1,
bias_attr=False)
self.combine_l2_l3 = nn.Sequential(
BNPReLU(2 * num_classes),
DilatedResidualBlock(2 * num_classes, num_classes, residual=False),
)
self.level2_up = nn.Sequential(
nn.Conv2DTranspose(num_classes,
num_classes,
2,
stride=2,
padding=0,
output_padding=0,
bias_attr=False),
BNPReLU(num_classes),
)
self.out_proj = layers.ConvBNPReLU(16 + in_channels + num_classes,
num_classes,
3,
padding='same',
stride=1)
self.out_up = nn.Conv2DTranspose(num_classes,
num_classes,
2,
stride=2,
padding=0,
output_padding=0,
bias_attr=False)
self.pretrained = pretrained

def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)

def forward(self, x):
p1, p2, p3 = self.encoder(x)
up_p3 = self.level3_up(p3)

combine = self.combine_l2_l3(paddle.concat([up_p3, p2], axis=1))
up_p2 = self.level2_up(combine)

combine = self.out_proj(paddle.concat([up_p2, p1], axis=1))
out = self.out_up(combine)
return [out]


class BNPReLU(nn.Layer):
def __init__(self, channels):
super().__init__()
self.bn = layers.SyncBatchNorm(channels)
self.act = nn.PReLU(channels)

def forward(self, x):
x = self.bn(x)
x = self.act(x)
return x


class DownSampler(nn.Layer):
"""
Down sampler.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
"""
def __init__(self, in_channels, out_channels):
super().__init__()
branch_channels = out_channels // 5
remain_channels = out_channels - branch_channels * 4
self.conv1 = nn.Conv2D(in_channels,
branch_channels,
3,
stride=2,
padding=1,
bias_attr=False)
self.d_conv1 = nn.Conv2D(branch_channels,
remain_channels,
3,
padding=1,
bias_attr=False)
self.d_conv2 = nn.Conv2D(branch_channels,
branch_channels,
3,
padding=2,
dilation=2,
bias_attr=False)
self.d_conv4 = nn.Conv2D(branch_channels,
branch_channels,
3,
padding=4,
dilation=4,
bias_attr=False)
self.d_conv8 = nn.Conv2D(branch_channels,
branch_channels,
3,
padding=8,
dilation=8,
bias_attr=False)
self.d_conv16 = nn.Conv2D(branch_channels,
branch_channels,
3,
padding=16,
dilation=16,
bias_attr=False)
self.bn = layers.SyncBatchNorm(out_channels)
self.act = nn.PReLU(out_channels)

def forward(self, x):
x = self.conv1(x)
d1 = self.d_conv1(x)
d2 = self.d_conv2(x)
d4 = self.d_conv4(x)
d8 = self.d_conv8(x)
d16 = self.d_conv16(x)

feat1 = d2
feat2 = feat1 + d4
feat3 = feat2 + d8
feat4 = feat3 + d16

feat = paddle.concat([d1, feat1, feat2, feat3, feat4], axis=1)
out = self.bn(feat)
out = self.act(out)
return out


class DilatedResidualBlock(nn.Layer):
'''
ESP block, principle: reduce -> split -> transform -> merge
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
residual (bool, optional): Add a residual connection through identity operation. Default: True.
'''
def __init__(self, in_channels, out_channels, residual=True):
super().__init__()
branch_channels = out_channels // 5
remain_channels = out_channels - branch_channels * 4
self.conv1 = nn.Conv2D(in_channels, branch_channels, 1, bias_attr=False)
self.d_conv1 = nn.Conv2D(branch_channels,
remain_channels,
3,
padding=1,
bias_attr=False)
self.d_conv2 = nn.Conv2D(branch_channels,
branch_channels,
3,
padding=2,
dilation=2,
bias_attr=False)
self.d_conv4 = nn.Conv2D(branch_channels,
branch_channels,
3,
padding=4,
dilation=4,
bias_attr=False)
self.d_conv8 = nn.Conv2D(branch_channels,
branch_channels,
3,
padding=8,
dilation=8,
bias_attr=False)
self.d_conv16 = nn.Conv2D(branch_channels,
branch_channels,
3,
padding=16,
dilation=16,
bias_attr=False)

self.bn = BNPReLU(out_channels)
self.residual = residual

def forward(self, x):
x_proj = self.conv1(x)
d1 = self.d_conv1(x_proj)
d2 = self.d_conv2(x_proj)
d4 = self.d_conv4(x_proj)
d8 = self.d_conv8(x_proj)
d16 = self.d_conv16(x_proj)

feat1 = d2
feat2 = feat1 + d4
feat3 = feat2 + d8
feat4 = feat3 + d16

feat = paddle.concat([d1, feat1, feat2, feat3, feat4], axis=1)

if self.residual:
feat = feat + x
out = self.bn(feat)
return out


class ESPNetEncoder(nn.Layer):
'''
The ESPNet-C implementation based on PaddlePaddle.
Args:
num_classes (int): The unique number of target classes.
in_channels (int, optional): Number of input channels. Default: 3.
level2_depth (int, optional): Depth of DilatedResidualBlock. Default: 5.
level3_depth (int, optional): Depth of DilatedResidualBlock. Default: 3.
'''
def __init__(self,
num_classes,
in_channels=3,
level2_depth=5,
level3_depth=3):
super().__init__()
self.level1 = layers.ConvBNPReLU(in_channels,
16,
3,
padding='same',
stride=2)
self.br1 = BNPReLU(in_channels + 16)
self.proj1 = layers.ConvBNPReLU(in_channels + 16, num_classes, 1)

self.level2_0 = DownSampler(in_channels + 16, 64)
self.level2 = nn.Sequential(
*[DilatedResidualBlock(64, 64) for i in range(level2_depth)])
self.br2 = BNPReLU(in_channels + 128)
self.proj2 = layers.ConvBNPReLU(in_channels + 128, num_classes, 1)

self.level3_0 = DownSampler(in_channels + 128, 128)
self.level3 = nn.Sequential(
*[DilatedResidualBlock(128, 128) for i in range(level3_depth)])
self.br3 = BNPReLU(256)
self.proj3 = layers.ConvBNPReLU(256, num_classes, 1)

def forward(self, x):
f1 = self.level1(x)
down2 = F.adaptive_avg_pool2d(x, output_size=f1.shape[2:])
feat1 = paddle.concat([f1, down2], axis=1)
feat1 = self.br1(feat1)
p1 = self.proj1(feat1)

f2_res = self.level2_0(feat1)
f2 = self.level2(f2_res)
down4 = F.adaptive_avg_pool2d(x, output_size=f2.shape[2:])
feat2 = paddle.concat([f2, f2_res, down4], axis=1)
feat2 = self.br2(feat2)
p2 = self.proj2(feat2)

f3_res = self.level3_0(feat2)
f3 = self.level3(f3_res)
feat3 = paddle.concat([f3, f3_res], axis=1)
feat3 = self.br3(feat3)
p3 = self.proj3(feat3)

return p1, p2, p3