Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
290 changes: 290 additions & 0 deletions jointContribution/causalpinn/CausalPINN.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,290 @@
import numpy as np
import paddle
import paddle.nn as nn
from paddle.io import Dataset
from paddle.optimizer.lr import LRScheduler
paddle.framework.core.set_prim_eager_enabled(True)
class exponential_decay(LRScheduler):
def __init__(self,
learning_rate,
step_size,
gamma=0.1,
last_epoch=-1,
verbose=False):
if not isinstance(step_size, int):
raise TypeError(
"The type of 'step_size' must be 'int', but received %s." %
type(step_size))
if gamma >= 1.0:
raise ValueError('gamma should be < 1.0.')

self.step_size = step_size
self.gamma = gamma
super().__init__(learning_rate, last_epoch, verbose)

def get_lr(self):
i = self.last_epoch // self.step_size
return self.base_lr * (self.gamma**i)


class DataGenerator(Dataset):
def __init__(self, t0, t1, n_t=10, n_x=64):
'Initialization'
self.t0 = t0
self.t1 = t1 + 0.01 * t1
self.n_t = n_t
self.n_x = n_x

def __getitem__(self, index):
'Generate one batch of data'
batch = self.__data_generation()
return batch

def __data_generation(self):
'Generates data containing batch_size samples'
t_r = paddle.uniform(shape=(self.n_t,), min=self.t0, max=self.t1).sort()
points = paddle.uniform(shape=(self.n_x, 2), min=0.0, max=2.0 * np.pi)
x_r = paddle.tile(points[:, 0:1], (1, n_t)).reshape((-1,1)) # N x T
y_r = paddle.tile(points[:, 1:2], (1, n_t)).reshape((-1,1)) # N x T
t_r = (paddle.tile(t_r, (1, n_x)).T).reshape((-1,1)) # N x T

t_r.stop_gradient=False
x_r.stop_gradient=False
y_r.stop_gradient=False
batch = (t_r, x_r, y_r)
return batch

class modified_MLP_II(paddle.nn.Layer):
def __init__(self, layers, L_x=1.0, L_y=1.0, M_t=1, M_x=1, M_y=1, activation=nn.Tanh()):
super(modified_MLP_II, self).__init__()
self.w_x = paddle.to_tensor(2.0 * np.pi / L_x,dtype='float32')
self.w_y = paddle.to_tensor(2.0 * np.pi / L_y,dtype='float32')
self.k_x = paddle.arange(1, M_x + 1).astype('float32')
self.k_y = paddle.arange(1, M_y + 1).astype('float32')
k_xx, k_yy = paddle.meshgrid(self.k_x, self.k_y)
self.k_x =self.k_x[:,None]
self.k_y =self.k_y[:,None]
self.k_xx = k_xx.flatten()[:,None]
self.k_yy = k_yy.flatten()[:,None]
self.M_t = M_t
self.U1 = paddle.nn.Linear(in_features=layers[0], out_features=layers[1])
self.U2 = paddle.nn.Linear(in_features=layers[0], out_features=layers[1])
self.Ws = paddle.nn.LayerList([paddle.nn.Linear(in_features=layers[i], out_features=layers[i + 1]) for i in
range(0, len(layers) - 2)])
self.F = paddle.nn.Linear(in_features=layers[-2], out_features=layers[-1])
self.activation = activation
self.k_t = paddle.pow(paddle.to_tensor(10), paddle.arange(0, self.M_t + 1)).astype('float32')[:,None]


def forward(self, inputs):
t = inputs[:,2:3]
x = inputs[:,0:1]
y = inputs[:,1:2]
inputs=paddle.concat([paddle.ones_like((t)), t @ self.k_t.T,
paddle.cos(x@self.k_x.T * self.w_x), paddle.cos(y@self.k_y.T * self.w_y),
paddle.sin(x@self.k_x.T * self.w_x), paddle.sin(y@self.k_y.T * self.w_y),
paddle.cos(x@self.k_xx.T * self.w_x) * paddle.cos(y@self.k_yy.T * self.w_y),
paddle.cos(x@self.k_xx.T * self.w_x) * paddle.sin(y@self.k_yy.T * self.w_y),
paddle.sin(x@self.k_xx.T * self.w_x) * paddle.cos(y@self.k_yy.T * self.w_y),
paddle.sin(x@self.k_xx.T * self.w_x) * paddle.sin(y@self.k_yy.T * self.w_y)], axis=1)
U = self.activation(self.U1(inputs))
V = self.activation(self.U2(inputs))
for W in self.Ws:
outputs = self.activation(W(inputs))
inputs = paddle.multiply(outputs, U) + paddle.multiply(1 - outputs, V)
outputs = self.F(inputs)
return outputs

class PINN((paddle.nn.Layer)):
def __init__(self, w_exact, layers, M_t, M_x, M_y, state0, t0, t1, n_t, x_star, y_star,t_star, tol):
super(PINN, self).__init__()
self.w_exact = w_exact

self.M_t = M_t
self.M_x = M_x
self.M_y = M_y

# grid
self.n_t = n_t
self.t0 = t0
self.t1 = t1
eps = 0.01 * t1
self.t = paddle.linspace(self.t0, self.t1 + eps, n_t)
self.x_star = x_star
self.y_star = y_star
self.t_star=t_star

# initial state
self.state0 = state0

self.tol = tol
self.M = paddle.triu(paddle.ones((n_t, n_t)), diagonal=1).T

self.network = modified_MLP_II(layers, L_x=2 * np.pi, L_y=2 * np.pi, M_t=M_t, M_x=M_x, M_y=M_y,
activation=nn.Tanh())

# Use optimizers to set optimizer initialization and update functions
self.optimizer = paddle.optimizer.Adam(learning_rate=exponential_decay(1e-3, step_size=10000, gamma=0.9),
parameters=self.network.parameters())

# Logger
self.loss_log = []
self.loss_ics_log = []
self.loss_u0_log = []
self.loss_v0_log = []
self.loss_w0_log = []
self.loss_bcs_log = []
self.loss_res_w_log = []
self.loss_res_c_log = []
self.l2_error_log = []

def residual_net(self, t, x, y):
u_v= self.network(paddle.concat([x, y, t], 1))
u = u_v[:, 0:1]
v = u_v[:, 1:2]

u_x = paddle.grad(u, x, create_graph=True)[0]
u_y = paddle.grad(u, y, create_graph=True)[0]
v_x = paddle.grad(v, x, create_graph=True)[0]
v_y = paddle.grad(v, y, create_graph=True)[0]
w = v_x - u_y

w_t = paddle.grad(w, t, create_graph=True)[0]
w_x = paddle.grad(w, x, create_graph=True)[0]
w_y = paddle.grad(w, y, create_graph=True)[0]

w_xx = paddle.grad(w_x, x, create_graph=True)[0]
w_yy = paddle.grad(w_y, y, create_graph=True)[0]

res_w = w_t + u * w_x + v * w_y - nu * (w_xx + w_yy)
res_c = u_x + v_y

return res_w, res_c

def residuals_and_weights(self, tol, batch):
t_r, x_r,y_r = batch
loss_u0, loss_v0, loss_w0 = self.loss_ics(self.x_star,self.y_star,paddle.zeros_like(self.x_star,dtype='float32'))
L_0 = 1e5 * (loss_u0 + loss_v0 + loss_w0)
res_w_pred, res_c_pred = self.residual_net(t_r, x_r, y_r)
L_t = paddle.mean(res_w_pred ** 2 + 100 * res_c_pred ** 2, axis=1)
W = paddle.exp(- tol * (self.M @ (L_t.reshape((-1,32)).T) + L_0))
W.stop_gradient=True
return L_0, L_t, W

def loss_ics(self,x,y,t):
# Compute forward pass
u_v = self.network(paddle.concat([x,y,t], 1))
u0_pred = u_v[:, 0:1]
v0_pred = u_v[:, 1:2]
v_x = paddle.grad(v0_pred, x, create_graph=True)[0]
u_y = paddle.grad(u0_pred, y, create_graph=True)[0]
w0_pred = v_x - u_y
# Compute loss
loss_u0 = paddle.mean((u0_pred.flatten() - self.state0[0, :, :].flatten()) ** 2)
loss_v0 = paddle.mean((v0_pred.flatten() - self.state0[1, :, :].flatten()) ** 2)
loss_w0 = paddle.mean((w0_pred.flatten() - self.state0[2, :, :].flatten()) ** 2)
return loss_u0, loss_v0, loss_w0

def loss(self, batch):
L_0, L_t, W = self.residuals_and_weights(self.tol, batch)
# Compute loss
loss = paddle.mean(W * (L_t.reshape((-1,32)).T) + L_0)
return loss

def compute_l2_error(self,x,y,t):
u_v = self.network(paddle.concat([x,y,t], 1))
u = u_v[:, 0:1]
v = u_v[:, 1:2]

u_y = paddle.grad(u, y, create_graph=True)[0]
v_x = paddle.grad(v, x, create_graph=True)[0]
w_pred = v_x - u_y
l2_error = paddle.linalg.norm(w_pred - paddle.transpose(self.w_exact,(1,2,0)).reshape((-1,1))) / paddle.linalg.norm(self.w_exact.reshape((-1,1)))
return l2_error

# Optimize parameters in a loop
def train(self, dataset, nIter=10000):
res_data = iter(dataset)
# Main training loop
for it in range(nIter):
batch = next(res_data)
loss = self.loss(batch)
loss.backward()
self.optimizer.step()
self.optimizer.clear_grad()

if it % 1 == 0:
l2_error_value = self.compute_l2_error(paddle.tile(self.x_star, (1, num_step)).reshape((-1,1)),paddle.tile(self.y_star, (1, num_step)).reshape((-1,1)),(paddle.tile(self.t_star[:num_step], (1, Nx**2)).T).reshape((-1,1)))
print("ite:{},loss:{:.3e},error:{:.3e}".format(it,self.loss(batch).item(),l2_error_value.item()))
# print("ite:{},loss:{:.3e}".format(it,loss.item()))
_, _, W_value = self.residuals_and_weights(self.tol, batch)

# self.l2_error_log.append(l2_error_value)

if W_value.min() > 0.99:
break

paddle.seed(1234)
data = np.load('/home/aistudio/data/data262374/NS.npy', allow_pickle=True).item()
# Test data
sol = paddle.to_tensor(data['sol'])

t_star = paddle.to_tensor(data['t']).reshape((-1,1))
x_star = paddle.to_tensor(data['x'])
y_star = paddle.to_tensor(data['y'])
nu = paddle.to_tensor(data['viscosity'])
Nt=len(t_star)
Nx=len(x_star)
sol = sol
x_star, y_star=paddle.meshgrid(x_star,y_star)
x_star=x_star.reshape((-1,1))
y_star=y_star.reshape((-1,1))

t_star.stop_gradient=False
x_star.stop_gradient=False
y_star.stop_gradient=False

# Create PINNs model
u0 = paddle.to_tensor(data['u0'])
v0 = paddle.to_tensor(data['v0'])
w0 = paddle.to_tensor(data['w0'])
state0 = paddle.stack([u0, v0, w0])
M_t = 2
M_x = 5
M_y = 5
d0 = 2 * M_x + 2 * M_y + 4 * M_x * M_y + M_t + 2
layers = [d0, 128, 128, 128, 128, 2]

num_step = 10
t0 = 0.0
t1 = t_star[num_step]
n_t = 32
tol = 1.0
tol_list = [1e-3, 1e-2, 1e-1, 1e0]

# Create data set
n_x = 256
dataset = DataGenerator(t0, t1, n_t, n_x)

N = 1 #20
w_pred_list = []
params_list = []
losses_list = []

# train
for k in range(N):
# Initialize model
print('Final Time: {}'.format(k + 1))
w_exact = sol[num_step * k: num_step * (k + 1), :, :]
model = PINN(w_exact, layers, M_t, M_x, M_y, state0, t0, t1, n_t, x_star, y_star,t_star, tol)

# Train
for tol in tol_list:
model.tol = tol
print('tol:', model.tol)
# Train
model.train(dataset, nIter=100000)

obj = {'model': model.state_dict()}
path = '/home/aistudio/model.pdparams'
paddle.save(obj, path)