Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 11 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ PaddleScience 是一个基于深度学习框架 PaddlePaddle 开发的科学计
| 飞行器设计 | [MeshGraphNets](https://aistudio.baidu.com/projectdetail/5322713) | 数据驱动 | GNN | 监督学习 | [Data](https://aistudio.baidu.com/datasetdetail/184320) | [Paper](https://arxiv.org/abs/2010.03409)|
| 飞行器设计 | [火箭发动机真空羽流](https://aistudio.baidu.com/projectdetail/4486133) | 数据驱动 | CNN | 监督学习 | [Data](https://aistudio.baidu.com/datasetdetail/167250) | - |
| 飞行器设计 | [Deep-Flow-Prediction](https://aistudio.baidu.com/projectdetail/5671596) | 数据驱动 | TurbNetG | 监督学习 | [Data](https://aistudio.baidu.com/datasetdetail/197778) | [Paper](https://arxiv.org/abs/1810.08217) |
| 通用流场模拟 | [气动外形设计](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/amgnet/) | 数据驱动 | AMGNet | 监督学习 | [Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/AMGNet/data.zip) | [Paper](https://arxiv.org/abs/1810.08217) |
| 通用流场模拟 | [气动外形设计](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/amgnet) | 数据驱动 | AMGNet | 监督学习 | [Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/AMGNet/data.zip) | [Paper](https://arxiv.org/abs/1810.08217) |
| 流固耦合 | [涡激振动](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/viv) | 机理驱动 | MLP | 半监督学习 | [Data](https://github.com/PaddlePaddle/PaddleScience/blob/develop/examples/fsi/VIV_Training_Neta100.mat) | [Paper](https://arxiv.org/abs/2206.03864)|
| 多相流 | [气液两相流](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/bubble) | 机理驱动 | BubbleNet | 半监督学习 | [Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/BubbleNet/bubble.mat) | [Paper](https://pubs.aip.org/aip/adv/article/12/3/035153/2819394/Predicting-micro-bubble-dynamics-with-semi-physics)|
| 多相流 | [twophasePINN](https://aistudio.baidu.com/projectdetail/5379212) | 机理驱动 | MLP | 无监督学习 | - | [Paper](https://doi.org/10.1016/j.mlwa.2021.100029)|
Expand All @@ -62,22 +62,22 @@ PaddleScience 是一个基于深度学习框架 PaddlePaddle 开发的科学计
| 流场高分辨率重构 | [基于Voronoi嵌入辅助深度学习的稀疏传感器全局场重建](https://aistudio.baidu.com/projectdetail/5807904) | 数据驱动 | CNN | 监督学习 | [Data1](https://drive.google.com/drive/folders/1K7upSyHAIVtsyNAqe6P8TY1nS5WpxJ2c)<br>[Data2](https://drive.google.com/drive/folders/1pVW4epkeHkT2WHZB7Dym5IURcfOP4cXu)<br>[Data3](https://drive.google.com/drive/folders/1xIY_jIu-hNcRY-TTf4oYX1Xg4_fx8ZvD) | [Paper](https://arxiv.org/pdf/2202.11214.pdf) |
| 流场高分辨率重构 | 基于扩散的流体超分重构<sup>coming soon</sup> | 数理融合 | DDPM | 监督学习 | - | [Paper](https://www.sciencedirect.com/science/article/pii/S0021999123000670)|
| 求解器耦合 | [CFD-GCN](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/cfdgcn) | 数据驱动 | GCN | 监督学习 | [Data](https://aistudio.baidu.com/aistudio/datasetdetail/184778)<br>[Mesh](https://paddle-org.bj.bcebos.com/paddlescience/datasets/CFDGCN/meshes.tar) | [Paper](https://arxiv.org/abs/2007.04439)|
| 受力分析 | [1D 欧拉梁变形](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/euler_beam/) | 机理驱动 | MLP | 无监督学习 | - | - |
| 受力分析 | [1D 欧拉梁变形](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/euler_beam) | 机理驱动 | MLP | 无监督学习 | - | - |
| 受力分析 | [2D 平板变形](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/biharmonic2d) | 机理驱动 | MLP | 无监督学习 | - | [Paper](https://arxiv.org/abs/2108.07243) |
| 受力分析 | [3D 连接件变形](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/bracket) | 机理驱动 | MLP | 无监督学习 | [Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/bracket/bracket_dataset.tar) | [Tutorial](https://docs.nvidia.com/deeplearning/modulus/modulus-v2209/user_guide/foundational/linear_elasticity.html) |
| 受力分析 | [结构震动模拟](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/phylstm) | 机理驱动 | PhyLSTM | 监督学习 | [Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/PhyLSTM/data_boucwen.mat) | [Paper](https://arxiv.org/abs/2002.10253) |
| 受力分析 | [2D 弹塑性结构](https://paddlescience-docs.readthedocs.io/zh/examples/epnn.md) | 机理驱动 | EPNN | 无监督学习 | [Train Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/epnn/dstate-16-plas.dat)<br>[Eval Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/epnn/dstress-16-plas.dat) | [Paper](https://arxiv.org/abs/2204.12088) |
| 受力分析和逆问题 | [3D 汽车控制臂变形](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/control_arm.md) | 机理驱动 | MLP | 无监督学习 | - | - |
| 拓扑优化 | [2D 拓扑优化](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/topopt.md) | 数据驱动 | TopOptNN | 监督学习 | [Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/topopt/top_dataset.h5) | [Paper](https://arxiv.org/pdf/1709.09578) |
| 热仿真 | [1D 换热器热仿真](https://paddlescience-docs.readthedocs.io/zh/examples/heat_exchanger.md) | 机理驱动 | PI-DeepONet | 无监督学习 | - | - |
| 热仿真 | [2D 热仿真](https://paddlescience-docs.readthedocs.io/zh/examples/heat_pinn.md) | 机理驱动 | PINN | 无监督学习 | - | [Paper](https://arxiv.org/abs/1711.10561)|
| 受力分析 | [2D 弹塑性结构](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/epnn) | 机理驱动 | EPNN | 无监督学习 | [Train Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/epnn/dstate-16-plas.dat)<br>[Eval Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/epnn/dstress-16-plas.dat) | [Paper](https://arxiv.org/abs/2204.12088) |
| 受力分析和逆问题 | [3D 汽车控制臂变形](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/control_arm) | 机理驱动 | MLP | 无监督学习 | - | - |
| 拓扑优化 | [2D 拓扑优化](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/topopt) | 数据驱动 | TopOptNN | 监督学习 | [Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/topopt/top_dataset.h5) | [Paper](https://arxiv.org/pdf/1709.09578) |
| 热仿真 | [1D 换热器热仿真](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/heat_exchanger) | 机理驱动 | PI-DeepONet | 无监督学习 | - | - |
| 热仿真 | [2D 热仿真](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/heat_pinn) | 机理驱动 | PINN | 无监督学习 | - | [Paper](https://arxiv.org/abs/1711.10561)|

<br>
<p align="center"><b>材料科学(AI for Material)</b></p>

| 问题类型 | 案例名称 | 优化算法 | 模型类型 | 训练方式 | 数据集 | 参考资料 |
|-----|---------|-----|---------|----|---------|---------|
| 材料设计 | [散射板设计(反问题)](./zh/examples/hpinns.md) | 数理融合 | 数据驱动 | 监督学习 | [Train Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/hPINNs/hpinns_holo_train.mat)<br>[Eval Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/hPINNs/hpinns_holo_valid.mat) | [Paper](https://arxiv.org/pdf/2102.04626.pdf) |
| 材料设计 | [散射板设计(反问题)](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/hpinns) | 数理融合 | 数据驱动 | 监督学习 | [Train Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/hPINNs/hpinns_holo_train.mat)<br>[Eval Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/hPINNs/hpinns_holo_valid.mat) | [Paper](https://arxiv.org/pdf/2102.04626.pdf) |
| 材料生成 | 面向对称感知的周期性材料生成<sup>coming soon</sup> | 数据驱动 | SyMat | 监督学习 | - | - |

<br>
Expand All @@ -86,15 +86,16 @@ PaddleScience 是一个基于深度学习框架 PaddlePaddle 开发的科学计
| 问题类型 | 案例名称 | 优化算法 | 模型类型 | 训练方式 | 数据集 | 参考资料 |
|-----|---------|-----|---------|----|---------|---------|
| 天气预报 | [FourCastNet 气象预报](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/fourcastnet) | 数据驱动 | FourCastNet | 监督学习 | [ERA5](https://app.globus.org/file-manager?origin_id=945b3c9e-0f8c-11ed-8daf-9f359c660fbd&origin_path=%2F~%2Fdata%2F) | [Paper](https://arxiv.org/pdf/2202.11214.pdf) |
| 天气预报 | [NowCastNet 气象预报](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/nowcastnet) | 数据驱动 | NowCastNet | 监督学习 | [MRMS](https://app.globus.org/file-manager?origin_id=945b3c9e-0f8c-11ed-8daf-9f359c660fbd&origin_path=%2F~%2Fdata%2F) | [Paper](https://www.nature.com/articles/s41586-023-06184-4) |
| 天气预报 | GraphCast 气象预报<sup>coming soon</sup> | 数据驱动 | GraphCastNet* | 监督学习 | - | [Paper](https://arxiv.org/pdf/2202.11214.pdf) |
| 大气污染物 | [UNet 污染物扩散](https://aistudio.baidu.com/projectdetail/5663515?channel=0&channelType=0&sUid=438690&shared=1&ts=1698221963752) | 数据驱动 | UNet | 监督学习 | [Data](https://aistudio.baidu.com/datasetdetail/198102) | - |

<!-- --8<-- [start:update] -->
## 🕘最近更新

- 添加多目标优化算法 [Relobralo](https://paddlescience-docs.readthedocs.io/zh/latest/zh/api/loss/mtl/#ppsci.loss.mtl.Relobralo) 。
- 添加气泡流求解案例([Bubble](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/bubble/))、机翼优化案例([DeepCFD](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/deepcfd/))、热传导仿真案例([HeatPINN](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/heat_pinn/))、非线性短临预报模型([Nowcasting(仅推理)](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/nowcastnet))、拓扑优化案例([TopOpt](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/topopt))、矩形平板线弹性方程求解案例([Biharmonic2D](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/biharmonic2d))。
- 添加二维血管案例([LabelFree-DNN-Surrogate](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/labelfree_DNN_surrogate/#4))、空气激波案例([ShockWave](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/shock_wave/))、去噪网络模型([DUCNN](https://github.com/PaddlePaddle/PaddleScience/tree/develop/jointContribution/DU_CNN))、风电预测模型([Deep Spatial Temporal](https://github.com/PaddlePaddle/PaddleScience/tree/develop/jointContribution/Deep-Spatio-Temporal))、域分解模型([XPINNs](https://github.com/PaddlePaddle/PaddleScience/tree/develop/jointContribution/XPINNs))、积分方程求解案例([Volterra Equation](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/volterra_ide/))、分数阶方程求解案例([Fractional Poisson 2D](https://github.com/PaddlePaddle/PaddleScience/blob/develop/examples/fpde/fractional_poisson_2d.py))。
- 添加气泡流求解案例([Bubble](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/bubble))、机翼优化案例([DeepCFD](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/deepcfd/))、热传导仿真案例([HeatPINN](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/heat_pinn))、非线性短临预报模型([Nowcasting(仅推理)](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/nowcastnet))、拓扑优化案例([TopOpt](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/topopt))、矩形平板线弹性方程求解案例([Biharmonic2D](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/biharmonic2d))。
- 添加二维血管案例([LabelFree-DNN-Surrogate](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/labelfree_DNN_surrogate/#4))、空气激波案例([ShockWave](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/shock_wave/))、去噪网络模型([DUCNN](https://github.com/PaddlePaddle/PaddleScience/tree/develop/jointContribution/DU_CNN))、风电预测模型([Deep Spatial Temporal](https://github.com/PaddlePaddle/PaddleScience/tree/develop/jointContribution/Deep-Spatio-Temporal))、域分解模型([XPINNs](https://github.com/PaddlePaddle/PaddleScience/tree/develop/jointContribution/XPINNs))、积分方程求解案例([Volterra Equation](https://paddlescience-docs.readthedocs.io/zh/latest/zh/examples/volterra_ide))、分数阶方程求解案例([Fractional Poisson 2D](https://github.com/PaddlePaddle/PaddleScience/blob/develop/examples/fpde/fractional_poisson_2d.py))。
- 针对串联方程和复杂方程场景,`Equation` 模块支持基于 [sympy](https://docs.sympy.org/dev/tutorials/intro-tutorial/intro.html) 的符号计算,并支持和 python 函数混合使用([#507](https://github.com/PaddlePaddle/PaddleScience/pull/507)、[#505](https://github.com/PaddlePaddle/PaddleScience/pull/505))。
- `Geometry` 模块和 `InteriorConstraint`、`InitialConstraint` 支持计算 SDF 微分功能([#539](https://github.com/PaddlePaddle/PaddleScience/pull/539))。
- 添加 **M**ulti**T**ask**L**earning(`ppsci.loss.mtl`) 多任务学习模块,针对多任务优化(如 PINN 方法)进一步提升性能,使用方式:[多任务学习指南](https://paddlescience-docs.readthedocs.io/zh/latest/zh/user_guide/#24)([#493](https://github.com/PaddlePaddle/PaddleScience/pull/505)、[#492](https://github.com/PaddlePaddle/PaddleScience/pull/505))。
Expand Down
1 change: 1 addition & 0 deletions docs/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -131,6 +131,7 @@
| 问题类型 | 案例名称 | 优化算法 | 模型类型 | 训练方式 | 数据集 | 参考资料 |
|-----|---------|-----|---------|----|---------|---------|
| 天气预报 | [FourCastNet 气象预报](./zh/examples/fourcastnet.md) | 数据驱动 | FourCastNet | 监督学习 | [ERA5](https://app.globus.org/file-manager?origin_id=945b3c9e-0f8c-11ed-8daf-9f359c660fbd&origin_path=%2F~%2Fdata%2F) | [Paper](https://arxiv.org/pdf/2202.11214.pdf) |
| 天气预报 | [NowCastNet 气象预报](./zh/examples/nowcastnet.md) | 数据驱动 | NowCastNet | 监督学习 | [MRMS](https://app.globus.org/file-manager?origin_id=945b3c9e-0f8c-11ed-8daf-9f359c660fbd&origin_path=%2F~%2Fdata%2F) | [Paper](https://www.nature.com/articles/s41586-023-06184-4) |
| 天气预报 | GraphCast 气象预报<sup>coming soon</sup> | 数据驱动 | GraphCastNet* | 监督学习 | - | [Paper](https://arxiv.org/abs/2212.12794) |
| 大气污染物 | [UNet 污染物扩散](https://aistudio.baidu.com/projectdetail/5663515?channel=0&channelType=0&sUid=438690&shared=1&ts=1698221963752) | 数据驱动 | UNet | 监督学习 | [Data](https://aistudio.baidu.com/datasetdetail/198102) | - |

Expand Down
6 changes: 5 additions & 1 deletion docs/zh/examples/nowcastnet.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ examples/nowcastnet/conf/nowcastnet.yaml:35:53

其中,`input_keys` 和 `output_keys` 分别代表网络模型输入、输出变量的名称。

## 4 模型评估可视化
## 4. 模型评估可视化

完成上述设置之后,将上述实例化的对象按顺序传递给 `ppsci.solver.Solver`:

Expand Down Expand Up @@ -91,3 +91,7 @@ examples/nowcastnet/nowcastnet.py
![result](https://paddle-org.bj.bcebos.com/paddlescience/docs/nowcastnet/gt.gif){ loading=lazy style="margin:0 auto;"}
<figcaption>模型真值结果</figcaption>
</figure>

## 7. 参考资料

- [Skilful nowcasting of extreme precipitation with NowcastNet](https://www.nature.com/articles/s41586-023-06184-4)