Skip to content

Commit

Permalink
Add nowcastnet
Browse files Browse the repository at this point in the history
  • Loading branch information
co63oc committed Nov 14, 2023
1 parent 76948a8 commit 7c64cc6
Show file tree
Hide file tree
Showing 15 changed files with 1,132 additions and 0 deletions.
1 change: 1 addition & 0 deletions docs/zh/api/data/dataset.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,5 +20,6 @@
- VtuDataset
- MeshAirfoilDataset
- MeshCylinderDataset
- RadarDataset
- build_dataset
show_root_heading: false
91 changes: 91 additions & 0 deletions docs/zh/examples/nowcastnet.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# NowcastNet

=== "模型训练命令"

暂无

=== "模型评估命令"

``` sh
# linux
wget https://paddle-org.bj.bcebos.com/paddlescience/datasets/nowcastnet/nowcastnet.zip
# windows
# curl https://paddle-org.bj.bcebos.com/paddlescience/datasets/nowcastnet/nowcastnet.zip --output nowcastnet.zip
unzip nowcastnet.zip -d datasets/
python nowcastnet.py mode=eval EVAL.pretrained_model_path=https://paddle-org.bj.bcebos.com/paddlescience/models/nowcastnet/nowcastnet_pretrained.pdparams
```

## 1. 背景简介

近年来,深度学习方法已被应用于天气预报,尤其是雷达观测的降水预报。这些方法利用大量雷达复合观测数据来训练神经网络模型,以端到端的方式进行训练,无需明确参考降水过程的物理定律。
这里复现了一个针对极端降水的非线性短临预报模型——NowcastNet,该模型将物理演变方案和条件学习法统一到一个神经网络框架中,实现了端到端的优化。

## 2. 模型原理

本章节仅对 NowcastNet 的模型原理进行简单地介绍,详细的理论推导请阅读 [Skilful nowcasting of extreme precipitation with NowcastNet](https://www.nature.com/articles/s41586-023-06184-4#Abs1)

模型的总体结构如图所示:

<figure markdown>
![nowcastnet-arch](nowcastnet/nowcastnet.png){ loading=lazy style="margin:0 auto"}
<figcaption>NowcastNet 网络模型</figcaption>
</figure>

模型使用预训练权重推理,接下来将介绍模型的推理过程。

## 3. 模型构建

在该案例中,用 PaddleScience 代码表示如下:

``` py linenums="24" title="examples/nowcastnet/nowcastnet.py"
--8<--
examples/nowcastnet/nowcastnet.py:24:36
--8<--
```

``` yaml linenums="35" title="examples/nowcastnet/conf/nowcastnet.yaml"
--8<--
examples/nowcastnet/conf/nowcastnet.yaml:35:53
--8<--
```

其中,`input_keys``output_keys` 分别代表网络模型输入、输出变量的名称。

## 4 模型评估可视化

完成上述设置之后,将上述实例化的对象按顺序传递给 `ppsci.solver.Solver`

``` py linenums="57" title="examples/nowcastnet/nowcastnet.py"
--8<--
examples/nowcastnet/nowcastnet.py:57:61
--8<--
```

然后构建 VisualizerRadar 生成图片结果:

``` py linenums="69" title="examples/nowcastnet/nowcastnet.py"
--8<--
examples/nowcastnet/nowcastnet.py:69:82
--8<--

## 5. 完整代码

``` py linenums="1" title="examples/nowcastnet/nowcastnet.py"
--8<--
examples/nowcastnet/nowcastnet.py
--8<--
```

## 6. 结果展示

下图展示了模型的预测结果和真值结果。

<figure markdown>
![result](nowcastnet/pd.gif){ loading=lazy style="margin:0 auto;"}
<figcaption>模型预测结果</figcaption>
</figure>

<figure markdown>
![result](nowcastnet/gt.gif){ loading=lazy style="margin:0 auto;"}
<figcaption>模型真值结果</figcaption>
</figure>
Binary file added docs/zh/examples/nowcastnet/gt.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/zh/examples/nowcastnet/nowcastnet.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/zh/examples/nowcastnet/pd.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
57 changes: 57 additions & 0 deletions examples/nowcastnet/conf/nowcastnet.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
hydra:
run:
# dynamic output directory according to running time and override name
dir: outputs_nowcastnet/${now:%Y-%m-%d}/${now:%H-%M-%S}/${hydra.job.override_dirname}
job:
name: ${mode} # name of logfile
chdir: false # keep current working direcotry unchaned
config:
override_dirname:
exclude_keys:
- TRAIN.checkpoint_path
- TRAIN.pretrained_model_path
- EVAL.pretrained_model_path
- mode
- output_dir
- log_freq
sweep:
# output directory for multirun
dir: ${hydra.run.dir}
subdir: ./

# general settings
mode: eval # running mode: train/eval
seed: 42
output_dir: ${hydra:run.dir}
NORMAL_DATASET_PATH: datasets/mrms/figure
LARGE_DATASET_PATH: datasets/mrms/large_figure

# set working condition
CASE_TYPE: normal # normal/large
NUM_SAVE_SAMPLES: 10
CPU_WORKER: 0

# model settings
MODEL:
normal:
input_keys: ["input"]
output_keys: ["output"]
input_length: 9
total_length: 29
image_width: 512
image_height: 512
image_ch: 2
ngf: 32
large:
input_keys: ["input"]
output_keys: ["output"]
input_length: 9
total_length: 29
image_width: 1024
image_height: 1024
image_ch: 2
ngf: 32

# evaluation settings
EVAL:
pretrained_model_path: checkpoints/paddle_mrms_model
96 changes: 96 additions & 0 deletions examples/nowcastnet/nowcastnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
"""
Reference: https://codeocean.com/capsule/3935105/tree/v1
"""
from os import path as osp

import hydra
import paddle
from omegaconf import DictConfig

import ppsci
from ppsci.utils import logger


def train(cfg: DictConfig):
print("Not supported.")


def evaluate(cfg: DictConfig):
# set random seed for reproducibility
ppsci.utils.misc.set_random_seed(cfg.seed)
# initialize logger
logger.init_logger("ppsci", osp.join(cfg.output_dir, "train.log"), "info")

if cfg.CASE_TYPE == "large":
dataset_path = cfg.LARGE_DATASET_PATH
model_cfg = cfg.MODEL.large
output_dir = osp.join(cfg.output_dir, "large")
elif cfg.CASE_TYPE == "normal":
dataset_path = cfg.NORMAL_DATASET_PATH
model_cfg = cfg.MODEL.normal
output_dir = osp.join(cfg.output_dir, "normal")
else:
raise ValueError(
f"cfg.CASE_TYPE should in ['normal', 'large'], but got '{cfg.mode}'"
)
model = ppsci.arch.NowcastNet(**model_cfg)

input_keys = ("radar_frames",)
dataset_param = {
"input_keys": input_keys,
"label_keys": (),
"image_width": model_cfg.image_width,
"image_height": model_cfg.image_height,
"total_length": model_cfg.total_length,
"dataset_path": dataset_path,
"data_type": paddle.get_default_dtype(),
}
test_data_loader = paddle.io.DataLoader(
ppsci.data.dataset.RadarDataset(**dataset_param),
batch_size=1,
shuffle=False,
num_workers=cfg.CPU_WORKER,
drop_last=True,
)

# initialize solver
solver = ppsci.solver.Solver(
model,
output_dir=output_dir,
pretrained_model_path=cfg.EVAL.pretrained_model_path,
)

for batch_id, test_ims in enumerate(test_data_loader):
test_ims = test_ims[0][input_keys[0]].numpy()
frames_tensor = paddle.to_tensor(
data=test_ims, dtype=paddle.get_default_dtype()
)
if batch_id <= cfg.NUM_SAVE_SAMPLES:
visualizer = {
"v_nowcastnet": ppsci.visualize.VisualizerRadar(
{"input": frames_tensor},
{
"output": lambda out: out["output"],
},
prefix="v_nowcastnet",
case_type=cfg.CASE_TYPE,
total_length=model_cfg.total_length,
)
}
solver.visualizer = visualizer
# visualize prediction
solver.visualize(batch_id)


@hydra.main(version_base=None, config_path="./conf", config_name="nowcastnet.yaml")
def main(cfg: DictConfig):
if cfg.mode == "train":
train(cfg)
elif cfg.mode == "eval":
evaluate(cfg)
else:
raise ValueError(f"cfg.mode should in ['train', 'eval'], but got '{cfg.mode}'")


if __name__ == "__main__":
main()
1 change: 1 addition & 0 deletions mkdocs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,7 @@ nav:
- EPNN: zh/examples/epnn.md
- 地球科学(AI for Earth Science):
- FourCastNet: zh/examples/fourcastnet.md
- NowcastNet: zh/examples/nowcastnet.md
- API文档:
- " ":
- ppsci.arch: zh/api/arch.md
Expand Down
2 changes: 2 additions & 0 deletions ppsci/arch/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
from ppsci.arch.afno import PrecipNet # isort:skip
from ppsci.arch.unetex import UNetEx # isort:skip
from ppsci.arch.epnn import Epnn # isort:skip
from ppsci.arch.nowcastnet import NowcastNet # isort:skip
from ppsci.utils import logger # isort:skip


Expand All @@ -52,6 +53,7 @@
"PrecipNet",
"UNetEx",
"Epnn",
"NowcastNet",
"build_model",
]

Expand Down
Loading

0 comments on commit 7c64cc6

Please sign in to comment.