Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update doc #9

Merged
merged 3 commits into from
May 13, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
151 changes: 149 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,2 +1,149 @@
# PaddleOCR
OCR algorithms with PaddlePaddle (still under develop)

# 简介
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。

## 特性:
- 超轻量级模型
- (检测模型4.1M + 识别模型4.5M = 8.6M)
- 支持竖排文字识别
- (单模型同时支持横排和竖排文字识别)
- 支持长文本识别
- 支持中英文数字组合识别
- 提供训练代码
- 支持模型部署


## 文档教程
- [快速安装](./doc/installation.md)
- [文本识别模型训练/评估/预测](./doc/detection.md)
- [文本预测模型训练/评估/预测](./doc/recognition.md)
- [基于inference model预测](./doc/)

### **快速开始**

下载inference模型
```
# 创建inference模型保存目录
mkdir inference && cd inference && mkdir det && mkdir rec
# 下载检测inference模型/ 识别 inference 模型
wget -P ./inference https://paddleocr.bj.bcebos.com/inference.tar
```

实现文本检测、识别串联推理,预测$image_dir$指定的单张图像:
```
export PYTHONPATH=.
python tools/infer/predict_eval.py --image_dir="/Demo.jpg" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
```
在执行预测时,通过参数det_model_dir以及rec_model_dir设置存储inference 模型的路径。

实现文本检测、识别串联推理,预测$image_dir$指指定文件夹下的所有图像:
```
python tools/infer/predict_eval.py --image_dir="/test_imgs/" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
```



## 文本检测算法:

PaddleOCR开源的文本检测算法列表:
- [x] [EAST](https://arxiv.org/abs/1704.03155)
- [x] [DB](https://arxiv.org/abs/1911.08947)
- [ ] [SAST](https://arxiv.org/abs/1908.05498)


算法效果:
|模型|骨干网络|Hmean|
|-|-|-|
|EAST|[ResNet50_vd](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|85.85%|
|EAST|[MobileNetV3](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|79.08%|
|DB|[ResNet50_vd](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|83.30%|
|DB|[MobileNetV3](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|73.00%|

PaddleOCR文本检测算法的训练与使用请参考[文档](./doc/detection.md)。

## 文本识别算法:

PaddleOCR开源的文本识别算法列表:
- [x] [CRNN](https://arxiv.org/abs/1507.05717)
- [x] [DTRB](https://arxiv.org/abs/1904.01906)
- [ ] [Rosetta](https://arxiv.org/abs/1910.05085)
- [ ] [STAR-Net](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)
- [ ] [RARE](https://arxiv.org/abs/1603.03915v1)
- [ ] [SRN]((https://arxiv.org/abs/2003.12294))(百度自研)

算法效果如下表所示,精度指标是在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上的评测结果的平均值。

|模型|骨干网络|ACC|
|-|-|-|
|Rosetta|[Resnet34_vd](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|80.24%|
|Rosetta|[MobileNetV3](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|78.16%|
|CRNN|[Resnet34_vd](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|82.20%|
|CRNN|[MobileNetV3](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|79.37%|
|STAR-Net|[Resnet34_vd](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|83.93%|
|STAR-Net|[MobileNetV3](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|81.56%|
|RARE|[Resnet34_vd](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|84.90%|
|RARE|[MobileNetV3](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|83.32%|

PaddleOCR文本识别算法的训练与使用请参考[文档](./doc/recognition.md)。

## TODO
**端到端OCR算法**
PaddleOCR即将开源百度自研端对端OCR模型[End2End-PSL](https://arxiv.org/abs/1909.07808),敬请关注。
- [ ] End2End-PSL (comming soon)



# 参考文献
```
1. EAST:
@inproceedings{zhou2017east,
title={EAST: an efficient and accurate scene text detector},
author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
pages={5551--5560},
year={2017}
}

2. DB:
@article{liao2019real,
title={Real-time Scene Text Detection with Differentiable Binarization},
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
journal={arXiv preprint arXiv:1911.08947},
year={2019}
}

3. DTRB:
@inproceedings{baek2019wrong,
title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={4715--4723},
year={2019}
}

4. SAST:
@inproceedings{wang2019single,
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
pages={1277--1285},
year={2019}
}

5. SRN:
@article{yu2020towards,
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
journal={arXiv preprint arXiv:2003.12294},
year={2020}
}

6. end2end-psl:
@inproceedings{sun2019chinese,
title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={9086--9095},
year={2019}
}
```
42 changes: 42 additions & 0 deletions configs/rec/rec_chinese_lite_train.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
Global:
algorithm: CRNN
use_gpu: true
epoch_num: 3000
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec_CRNN
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: ch
character_dict_path: ./ppocr/utils/ppocr_keys_v1.txt
loss_type: ctc
reader_yml: ./configs/rec/rec_chinese_reader.yml
pretrain_weights: ./pretrain_models/CRNN/best_accuracy
checkpoints:
save_inference_dir:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel

Backbone:
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: small

Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: rnn
SeqRNN:
hidden_size: 48

Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss

Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.0005
beta1: 0.9
beta2: 0.999
14 changes: 14 additions & 0 deletions configs/rec/rec_chinese_reader.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
TrainReader:
reader_function: ppocr.data.rec.dataset_traversal,SimpleReader
num_workers: 8
img_set_dir: ./train_data
label_file_path: ./train_data/rec_gt_train.txt

EvalReader:
reader_function: ppocr.data.rec.dataset_traversal,SimpleReader
img_set_dir: ./train_data
label_file_path: ./train_data/rec_gt_test.txt

TestReader:
reader_function: ppocr.data.rec.dataset_traversal,SimpleReader
infer_img: ./infer_img
8 changes: 4 additions & 4 deletions configs/rec/rec_icdar15_train.yml
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,8 @@ Global:
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: ch
character_dict_path: ./ppocr/utils/ic15_dict.txt
character_type: en
character_dict_path: /workspace/PaddleOCR/train_data/ic15_dict.txt
loss_type: ctc
reader_yml: ./configs/rec/rec_icdar15_reader.yml
pretrain_weights: ./pretrain_models/CRNN/best_accuracy
Expand All @@ -24,13 +24,13 @@ Architecture:
Backbone:
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: small
model_name: large

Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: rnn
SeqRNN:
hidden_size: 48
hidden_size: 96

Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Expand Down
151 changes: 0 additions & 151 deletions doc/README.md

This file was deleted.

Loading