Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs: Fix docs errors #13588

Merged
merged 4 commits into from
Aug 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions docs/ppocr/blog/PP-OCRv3_introduction.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,17 +14,17 @@ PP-OCRv3在PP-OCRv2的基础上进一步升级。整体的框架图保持了与P
从算法改进思路上看,分别针对检测和识别模型,进行了共9个方面的改进:

- 检测模块:
- LK-PAN:大感受野的PAN结构;
- DML:教师模型互学习策略;
- RSE-FPN:残差注意力机制的FPN结构;
- LK-PAN:大感受野的PAN结构;
- DML:教师模型互学习策略;
- RSE-FPN:残差注意力机制的FPN结构;

- 识别模块:
- SVTR_LCNet:轻量级文本识别网络;
- GTC:Attention指导CTC训练策略;
- TextConAug:挖掘文字上下文信息的数据增广策略;
- TextRotNet:自监督的预训练模型;
- UDML:联合互学习策略;
- UIM:无标注数据挖掘方案。
- SVTR_LCNet:轻量级文本识别网络;
- GTC:Attention指导CTC训练策略;
- TextConAug:挖掘文字上下文信息的数据增广策略;
- TextRotNet:自监督的预训练模型;
- UDML:联合互学习策略;
- UIM:无标注数据挖掘方案。

从效果上看,速度可比情况下,多种场景精度均有大幅提升:

Expand Down
20 changes: 10 additions & 10 deletions docs/ppocr/blog/PP-OCRv4_introduction.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,18 +14,18 @@ PP-OCRv4在PP-OCRv3的基础上进一步升级。整体的框架图保持了与P
从算法改进思路上看,分别针对检测和识别模型,进行了共10个方面的改进:

* 检测模块:
* LCNetV3:精度更高的骨干网络
* PFHead:并行head分支融合结构
* DSR: 训练中动态增加shrink ratio
* CML:添加Student和Teacher网络输出的KL div loss
* LCNetV3:精度更高的骨干网络
* PFHead:并行head分支融合结构
* DSR: 训练中动态增加shrink ratio
* CML:添加Student和Teacher网络输出的KL div loss

* 识别模块:
* SVTR_LCNetV3:精度更高的骨干网络
* Lite-Neck:精简的Neck结构
* GTC-NRTR:稳定的Attention指导分支
* Multi-Scale:多尺度训练策略
* DF: 数据挖掘方案
* DKD :DKD蒸馏策略
* SVTR_LCNetV3:精度更高的骨干网络
* Lite-Neck:精简的Neck结构
* GTC-NRTR:稳定的Attention指导分支
* Multi-Scale:多尺度训练策略
* DF: 数据挖掘方案
* DKD :DKD蒸馏策略

从效果上看,速度可比情况下,多种场景精度均有大幅提升:

Expand Down
Binary file added docs/ppocr/images/ppocrv3_framework.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.