Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add WeightOnlyPTQ and GPTQ #6572

Merged
merged 3 commits into from
Aug 2, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions llm/causallm/argument.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,8 @@ class QuantArgument:
# PTQ related parameters
do_ptq: bool = field(default=False, metadata={"help": "Whether to use PTQ"})
ptq_step: int = field(default=8, metadata={"help": "Step for PTQ"})
ptq_weight_only: bool = field(default=False, metadata={"help": "Whether to use PTQ weight only"})
quant_bits: int = field(default=8, metadata={"help": "Quantization bit size"})

fused_qkv: bool = field(default=False, metadata={"help": "Whether to use Fused Quantized QKV"})
parallel_ffn: bool = field(default=False, metadata={"help": "Whether to use Parallel FFN"})
Expand Down
13 changes: 11 additions & 2 deletions llm/causallm/finetune_generation.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,9 +48,9 @@ def main():
training_args.print_config(quant_args, "Quant")
training_args.print_config(gen_args, "Generation")

if sum([quant_args.do_ptq, quant_args.do_qat, training_args.do_train]) > 1:
if sum([quant_args.do_ptq, quant_args.do_qat, quant_args.do_gptq, training_args.do_train]) > 1:
raise ValueError(
"--do_train, --do_ptq and --do_qat cannot work at the same time. Please choose only one at a time"
"--do_train, --do_ptq, --do_gptq and --do_qat cannot work at the same time. Please choose only one at a time"
)

# Setup GPU & distributed training
Expand Down Expand Up @@ -257,6 +257,15 @@ def compute_metrics_do_generation(eval_preds):

apply_ptq(quant_args, trainer, ptq_dataloader)

if quant_args.do_gptq:
if isinstance(model, LoRAModel):
raise NotImplementedError(
"PTQ strategy not supported for LoRA model. Please merge lora parameters to pretrain model first."
)
from quant import apply_gptq

apply_gptq(quant_args, trainer, ptq_dataloader)

# Evaluation dev set
if training_args.do_eval:
eval_result = trainer.evaluate(dev_ds)
Expand Down
30 changes: 26 additions & 4 deletions llm/causallm/quant.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,17 +20,19 @@
from paddle.quantization import PTQ, QAT, QuantConfig
from paddle.quantization.quanters.abs_max import FakeQuanterWithAbsMaxObserverLayer
from paddleslim.quant.advanced import (
GPTQ,
EMASampler,
MultiStepSampler,
PieceWiseSearch,
Shift,
Smooth,
)
from paddleslim.quant.advanced.utils import find_parent_layer_and_sub_name
from paddleslim.quant.layers import (
QuantizedColumnParallelLinear,
QuantizedRowParallelLinear,
)
from paddleslim.quant.observers import AbsMaxChannelWiseWeightObserver, AbsmaxObserver
from paddleslim.quant.observers import AbsMaxChannelWiseWeightObserver, AVGObserver
from paddleslim.quant.quanters import PACTQuanter

from paddlenlp.peft import PrefixModelForCausalLM
Expand Down Expand Up @@ -93,7 +95,7 @@ def apply_smooth(quant_args, trainer, ptq_dataloader, ptq_model_config):
search_scale_min=1.0,
search_scale_max=5.0,
weight_quant_method="abs_max_channel_wise",
act_quant_method="abs_max",
act_quant_method="avg",
)
else:
search_func = None
Expand All @@ -117,8 +119,8 @@ def apply_smooth(quant_args, trainer, ptq_dataloader, ptq_model_config):

def apply_ptq(quant_args, trainer, ptq_dataloader):
q_config = QuantConfig(activation=None, weight=None)
act_quanter = AbsmaxObserver()
weight_quanter = AbsMaxChannelWiseWeightObserver()
act_quanter = AVGObserver() if not quant_args.ptq_weight_only else None
weight_quanter = AbsMaxChannelWiseWeightObserver(quant_bits=quant_args.quant_bits)
q_config.add_qat_layer_mapping(ColumnParallelLinear, QuantizedColumnParallelLinear)
q_config.add_qat_layer_mapping(RowParallelLinear, QuantizedRowParallelLinear)
q_config.add_type_config(
Expand All @@ -137,6 +139,26 @@ def apply_ptq(quant_args, trainer, ptq_dataloader):
trainer.model = ptq.convert(trainer.model, inplace=True)


def apply_gptq(quant_args, trainer, ptq_dataloader):
num_layer = 0
model = trainer.model
for cur_name, cur_layer in model.named_sublayers():
if type(cur_layer) in [paddle.nn.Linear, ColumnParallelLinear, RowParallelLinear]:
num_layer += 1
print("GPTQ layer", num_layer, cur_name)
parent_layer, sub_name = find_parent_layer_and_sub_name(model, cur_name)
cur_quant_layer = GPTQ(cur_layer)
setattr(parent_layer, sub_name, cur_quant_layer)
trainer.ptq_loop(
ptq_dataloader,
description="PTQ",
max_eval_iters=quant_args.ptq_step,
)
cur_quant_layer.fasterquant(percdamp=0.1, groupsize=-1, actorder=True)
del cur_quant_layer
setattr(parent_layer, sub_name, cur_layer)


def get_ptq_model_config(model):
if isinstance(model, PrefixModelForCausalLM):
base_model_prefix = model.model.base_model_prefix
Expand Down
Loading