Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add PP-MiniLM #1403

Merged
merged 19 commits into from
Dec 16, 2021
Merged
Show file tree
Hide file tree
Changes from 10 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
379 changes: 379 additions & 0 deletions examples/model_compression/PP-MiniLM/README.md

Large diffs are not rendered by default.

85 changes: 85 additions & 0 deletions examples/model_compression/PP-MiniLM/data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np

from paddle.metric import Metric, Accuracy
from paddlenlp.transformers import ErnieForSequenceClassification, ErnieTokenizer
from paddlenlp.transformers import BertForSequenceClassification, BertTokenizer

MODEL_CLASSES = {
"ernie": (ErnieForSequenceClassification, ErnieTokenizer),
"bert": (BertForSequenceClassification, BertTokenizer)
}

METRIC_CLASSES = {
"afqmc": Accuracy,
"tnews": Accuracy,
"iflytek": Accuracy,
"ocnli": Accuracy,
"cmnli": Accuracy,
"cluewsc2020": Accuracy,
"csl": Accuracy,
}


def convert_example(example,
tokenizer,
label_list,
max_seq_length=512,
is_test=False):
"""convert a glue example into necessary features"""
if not is_test:
# `label_list == None` is for regression task
label_dtype = "int64" if label_list else "float32"
# Get the label
label = example['label']
label = np.array([label], dtype=label_dtype)
# Convert raw text to feature
if 'sentence' in example:
example = tokenizer(example['sentence'], max_seq_len=max_seq_length)
elif 'sentence1' in example:
example = tokenizer(
example['sentence1'],
text_pair=example['sentence2'],
max_seq_len=max_seq_length)
elif 'keyword' in example: # CSL
sentence1 = " ".join(example['keyword'])
example = tokenizer(
sentence1, text_pair=example['abst'], max_seq_len=max_seq_length)
elif 'target' in example: # wsc
text, query, pronoun, query_idx, pronoun_idx = example['text'], example[
'target']['span1_text'], example['target']['span2_text'], example[
'target']['span1_index'], example['target']['span2_index']
text_list = list(text)
assert text[pronoun_idx:(pronoun_idx + len(pronoun)
)] == pronoun, "pronoun: {}".format(pronoun)
assert text[query_idx:(query_idx + len(query)
)] == query, "query: {}".format(query)
if pronoun_idx > query_idx:
text_list.insert(query_idx, "_")
text_list.insert(query_idx + len(query) + 1, "_")
text_list.insert(pronoun_idx + 2, "[")
text_list.insert(pronoun_idx + len(pronoun) + 2 + 1, "]")
else:
text_list.insert(pronoun_idx, "[")
text_list.insert(pronoun_idx + len(pronoun) + 1, "]")
text_list.insert(query_idx + 2, "_")
text_list.insert(query_idx + len(query) + 2 + 1, "_")
text = "".join(text_list)
example = tokenizer(text, max_seq_len=max_seq_length)

if not is_test:
return example['input_ids'], example['token_type_ids'], label
else:
return example['input_ids'], example['token_type_ids']
78 changes: 78 additions & 0 deletions examples/model_compression/PP-MiniLM/finetuning/export_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import paddle

from run_clue import MODEL_CLASSES


def parse_args():
parser = argparse.ArgumentParser()

# Required parameters
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " +
", ".join(MODEL_CLASSES.keys()), )
parser.add_argument(
"--model_path",
default=None,
type=str,
required=True,
help="Path of the trained model to be exported.", )
parser.add_argument(
"--output_path",
default=None,
type=str,
required=True,
help="The output file prefix used to save the exported inference model.",
)
args = parser.parse_args()
return args


def main():
args = parse_args()

args.model_type = args.model_type.lower()
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]

# build model and load trained parameters
model = model_class.from_pretrained(args.model_path)
# switch to eval model
model.eval()
# convert to static graph with specific input description
model = paddle.jit.to_static(
model,
input_spec=[
paddle.static.InputSpec(
shape=[None, None], dtype="int64"), # input_ids
paddle.static.InputSpec(
shape=[None, None], dtype="int64") # segment_ids
])
# save converted static graph model
paddle.jit.save(model, args.output_path)
# also save tokenizer for inference usage
tokenizer = tokenizer_class.from_pretrained(args.model_path)
tokenizer.save_pretrained(os.path.dirname(args.output_path))


if __name__ == "__main__":
main()
35 changes: 35 additions & 0 deletions examples/model_compression/PP-MiniLM/finetuning/run_all_search.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# $1 means GENERAL_DIR

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

删除空行

# The penultimate parameter is the card id, this script can be changed if necessary
bash run_one_search.sh $1 afqmc 0 &
bash run_one_search.sh $1 tnews 1 &
bash run_one_search.sh $1 ifly 2 &
bash run_one_search.sh $1 ocnli 3 &
bash run_one_search.sh $1 csl 4 &
bash run_one_search.sh $1 wsc 5 &

# Because the CMNLI data set is significantly larger than other data sets,
# it needs to be placed on different cards.
lr=1e-4
bs=16
sh run_clue.sh CMNLI $lr $bs 3 128 0 $1 > $1/cmnli/${lr}_${bs}_3_128.log &
bs=32
sh run_clue.sh CMNLI $lr $bs 3 128 1 $1 > $1/cmnli/${lr}_${bs}_3_128.log &
bs=64
sh run_clue.sh CMNLI $lr $bs 3 128 2 $1 > $1/cmnli/${lr}_${bs}_3_128.log &

lr=5e-5
bs=16
sh run_clue.sh CMNLI $lr $bs 3 128 3 $1 > $1/cmnli/${lr}_${bs}_3_128.log &
bs=32
sh run_clue.sh CMNLI $lr $bs 3 128 4 $1 > $1/cmnli/${lr}_${bs}_3_128.log &
bs=64
sh run_clue.sh CMNLI $lr $bs 3 128 5 $1 > $1/cmnli/${lr}_${bs}_3_128.log &

lr=3e-5
bs=16
sh run_clue.sh CMNLI $lr $bs 3 128 6 $1 > $1/cmnli/${lr}_${bs}_3_128.log &
bs=32
sh run_clue.sh CMNLI $lr $bs 3 128 5 $1 > $1/cmnli/${lr}_${bs}_3_128.log &
bs=64
sh run_clue.sh CMNLI $lr $bs 3 128 7 $1 > $1/cmnli/${lr}_${bs}_3_128.log &
Loading