Skip to content

【Performance Optimization】Replace cross_entropy_with_softmax to c_softmax_with_cross_entropy in dynamic auto mode #10471

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Apr 27, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions llm/auto_parallel/llama/run_pretrain_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -539,6 +539,7 @@ def main():
config.tensor_parallel_degree = training_args.tensor_parallel_degree
config.tensor_parallel_rank = training_args.tensor_parallel_rank
config.sharding_parallel_degree = training_args.sharding_parallel_degree
config.to_static = training_args.to_static

if training_args.strategy.pipeline.enable and config.virtual_pp_degree > 1:
pipeline = training_args.strategy.pipeline
Expand All @@ -556,6 +557,11 @@ def main():

print("Final pre-training config:", config)

if "replace_with_parallel_cross_entropy" in training_args.tensor_parallel_config and config.tensor_parallel_degree > 1 and config.to_static is False:
from llm.utils.replace_ops import replace_cross_entropy

replace_cross_entropy()

# # Set the dtype for loading model
# dtype = "float32"
# if training_args.fp16_opt_level == "O2":
Expand Down
240 changes: 240 additions & 0 deletions llm/utils/replace_ops.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,240 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle import nn
import functools
import math
import operator
from typing import Literal, TypeAlias
import paddle.distributed as dist

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个文件会长期存在吗,放这个位置合适不? pre-commit好像没过去,应该需要copyright之类的

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done

from paddle import Tensor
from paddle import _C_ops, base, in_dynamic_mode
from paddle.distributed.fleet.base import topology as tp
from paddle.distributed import collective
from paddle.tensor.manipulation import reshape
from paddle.nn.layer.layers import Layer
_ReduceMode: TypeAlias = Literal['mean', 'sum', 'none']


# TODO: this function is rewrited from paddle.nn.functional.cross_entropy,
# but better to merge into only one.
def parallel_cross_entropy(
input: Tensor,
label: Tensor,
weight: Tensor | None = None,
ignore_index: int = -100,
reduction: _ReduceMode = 'mean',
soft_label: bool = False,
axis: int = -1,
use_softmax: bool = True,
label_smoothing: float = 0.0,
name: str | None = None,
) -> Tensor:

if reduction not in ['sum', 'mean', 'none']:
raise ValueError(
"The value of 'reduction' in softmax_cross_entropy"
f"should be 'sum', 'mean' or 'none', but received {reduction}, which is not allowed."
)
if ignore_index > 0 and soft_label:
raise ValueError(
"When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
f"should be '-100', but received {ignore_index}, which is not allowed."
)

input_dims = len(list(input.shape))
if input_dims == 0:
raise ValueError('The dimension of input should be larger than zero!')

label_dims = len(list(label.shape))
if input_dims - 1 == label_dims:
label = paddle.unsqueeze(label, axis=axis)

if input_dims - 1 != label_dims and input_dims != label_dims:
raise ValueError(
f'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
(got nput_dims{input_dims}, label_dims{label_dims})'
)

if label_smoothing > 0.0:
soft_label = True
# converting the label to one-hot encoding
# for 1d case, converting label's shape from [N] to [N, C]
# for 2d case, converting label's shape from [N, d_1, ..., d_k] to [N, d_1, ..., d_k, C]
if input_dims - 1 == label_dims:
label = paddle.squeeze(label, axis=axis)
label = paddle.nn.functional.one_hot(label, input.shape[-1])

label = paddle.nn.functional.label_smooth(
label, epsilon=label_smoothing
)
label = label.astype(input.dtype)
label_dims = len(list(label.shape))

if not soft_label:
valid_label = (
paddle.cast(label != ignore_index, dtype=label.dtype) * label
)

if soft_label == False and is_tensor_sharded(input):
group = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group()
ring_id = group.id
nranks = group.nranks
global_rank = collective._get_global_env().rank
rank = group.get_group_rank(global_rank)
_, out = _C_ops.c_softmax_with_cross_entropy(
input, label, ignore_index, ring_id, rank, nranks
)
else:
from paddlenlp.utils.log import logger

logger.warning(
"Failed to replace CrossEntropyLoss with ParallelCrossEntropyLoss. Please ensure: \n"
"1. soft_label=False is set for parallel computation (current value: {}) \n"
"2. Input tensor is properly sharded (current sharding status: {}) \n".format(
soft_label,
input_placement,
)
)

_, out = _C_ops.cross_entropy_with_softmax(
input, label, soft_label, use_softmax, True, ignore_index, axis
)

if weight is not None:
# trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
if soft_label:
# chajchaj:
# weight's shape is C, where C is class num.
# for 1d case: label's shape is [N,C], weight_gather's shape is N.
# for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
weight_gather = paddle.matmul(
x=paddle.cast(label, weight.dtype),
y=weight,
transpose_x=False,
transpose_y=True,
)
out_shape = list(out.shape)
weight_gather_reshape = reshape(weight_gather, shape=out_shape)
out = paddle.cast(out, weight_gather_reshape.dtype)

out = _C_ops.multiply(out, weight_gather_reshape)
else:
if input.shape[axis] != weight.shape[-1]:
raise ValueError(
f"input's class_dimension({input.shape[axis]}) must equal to "
f"weight's class_dimension({weight.shape[-1]}) "
"when weight is provided"
)

ignore_weight_mask = paddle.cast(
(label != ignore_index), out.dtype
)
if (
ignore_weight_mask.ndim > 1
and ignore_weight_mask.shape[axis] == 1
):
# TODO: Temporarily use squeeze instead of squeeze_
ignore_weight_mask = paddle.squeeze(
ignore_weight_mask, axis
)
if axis != -1 and axis != valid_label.ndim - 1:
temp_perm = (
list(range(axis % valid_label.ndim))
+ list(
range(
(axis % valid_label.ndim + 1), valid_label.ndim
)
)
+ [axis % valid_label.ndim]
)
weight_gather = _C_ops.gather_nd(
weight, valid_label.transpose(temp_perm)
)
else:
weight_gather = _C_ops.gather_nd(weight, valid_label)
weight_gather = _C_ops.multiply(
weight_gather, ignore_weight_mask
)
input_shape = list(label.shape)
weight_gather_reshape = reshape(
weight_gather, shape=input_shape
)
out = paddle.cast(out, weight_gather_reshape.dtype)
out = _C_ops.multiply(out, weight_gather_reshape)

if reduction == "sum":
# because of base_softmax_with_cross_entropy op's inner logic,
# in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
# so, reduce_sum all directly is ok
return _C_ops.sum(out, [], None, False)
elif reduction == "mean":
# 1. if weight==none,
# numerator: reduce_sum all loss directly is ok causeof base_softmax_with_cross_entropy's inner logic
# denominator: count sample num with class_index!=ignore_index
# 2. else
# numerator: loss's weighted sum
# denominator: cal the sum of weight where the sample's class_index!=ignore_index
if ignore_index >= 0: # ignore label
out_sum = _C_ops.sum(out, [], None, False)
# for each label[i],set 1 or 0, according to ignore_index
# mask[i]=0, if label[i]==ignore_index
# mask[i]=1, otherwise
mask = label != ignore_index
if weight is None:
mask = paddle.cast(mask, dtype=out_sum.dtype)
count = _C_ops.sum(mask, [], None, False)
ret = out_sum / (count + (count == 0.0).astype(count.dtype))
else:
mask = paddle.cast(mask, weight_gather_reshape.dtype)
weight_ignored = _C_ops.multiply(
mask, weight_gather_reshape
)
weight_sum = _C_ops.sum(weight_ignored, [], None, False)
ret = out_sum / (
weight_sum
+ (weight_sum == 0.0).astype(weight_sum.dtype)
)
return ret
elif weight is not None:
out_sum = _C_ops.sum(out, [], None, False)
total_weight = _C_ops.sum(
weight_gather_reshape, [], None, False
)
return out_sum / (
total_weight
+ (total_weight == 0.0).astype(total_weight.dtype)
)
else:
return _C_ops.mean_all(out)

else:
if input_dims - 1 == label_dims:
out = paddle.squeeze(out, axis=axis)
return out


# TODO: placement[1] may not be mp axis.
def is_tensor_sharded(tensor):
if not tensor.is_dist():
return False

placement = tensor.placements
return placement[1].is_shard()


def replace_cross_entropy():
paddle.nn.functional.cross_entropy = parallel_cross_entropy