-
Notifications
You must be signed in to change notification settings - Fork 2.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
131 additions
and
91 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import atexit | ||
import copy | ||
import multiprocessing | ||
import os | ||
import time | ||
|
||
import paddle | ||
|
||
from paddlenlp.utils.log import logger | ||
|
||
|
||
def _save_optimizer(obj, name_mapping, path, saved_signal_path, protocol): | ||
start_time = time.time() | ||
for k, v in obj.items(): | ||
if k == "master_weights" and isinstance(v, dict): | ||
for kk, vv in v.items(): | ||
if isinstance(vv, paddle.Tensor): | ||
vv.name = name_mapping["master_weights"][kk] | ||
else: | ||
if k in name_mapping and isinstance(v, paddle.Tensor): | ||
v.name = name_mapping[k] | ||
paddle.save(obj, path, protocol) | ||
# dump saved_signal | ||
with open(saved_signal_path, mode="w+") as f: | ||
f.write("1") | ||
f.flush() | ||
os.fsync(f.fileno()) | ||
end_time = time.time() | ||
elapsed_time = end_time - start_time | ||
logger.info(f"Async save optimizer took {elapsed_time:.6f} seconds to execute.") | ||
|
||
|
||
class AsyncSaver: | ||
def __init__(self): | ||
self.context = multiprocessing.get_context("spawn") | ||
self.cpu_optimizer_state_dict = {} | ||
self.pool = self.context.Pool(1) | ||
self.result = None | ||
self.name_mapping = None | ||
|
||
atexit.register(self.shutdown) | ||
|
||
def run(self, optimizer_state_dict, path, saved_signal_path, protocol=4): | ||
logger.info(f"Started saving optimizer_state_dict to {os.path.abspath(path)}.") | ||
self._wait_for_previous_result() | ||
|
||
self._reset_state(path, saved_signal_path, protocol) | ||
self._process_optimizer_state_dict(optimizer_state_dict) | ||
|
||
self.result = self.pool.apply_async( | ||
_save_optimizer, | ||
args=(self.cpu_optimizer_state_dict, self.name_mapping, self.path, self.saved_signal_path, self.protocol), | ||
) | ||
|
||
logger.info("Finished launching saving optimizer_state_dict process") | ||
|
||
def _wait_for_previous_result(self): | ||
if self.result is not None: | ||
max_retries = 5 | ||
for retries in range(max_retries): | ||
try: | ||
self.result.get() | ||
break | ||
except Exception as e: | ||
if retries == max_retries - 1: | ||
raise RuntimeError(f"Failed after {max_retries} retries during async save.") | ||
|
||
time.sleep(1 + retries * 2) | ||
logger.warning(f"An error occurred during async save: {e}. Retrying...") | ||
self.result = self.pool.apply_async( | ||
_save_optimizer, | ||
args=( | ||
self.cpu_optimizer_state_dict, | ||
self.name_mapping, | ||
self.path, | ||
self.saved_signal_path, | ||
self.protocol, | ||
), | ||
) | ||
|
||
if self.result.ready() and not self.result.successful(): | ||
raise RuntimeError("The previous async save task failed.") | ||
else: | ||
pass | ||
|
||
def _reset_state(self, path, saved_signal_path, protocol): | ||
self.cpu_optimizer_state_dict.clear() | ||
self.name_mapping = {"master_weights": {}} | ||
self.path = path | ||
self.saved_signal_path = saved_signal_path | ||
self.protocol = protocol | ||
|
||
def _process_optimizer_state_dict(self, optimizer_state_dict): | ||
for k, v in optimizer_state_dict.items(): | ||
if k == "master_weights": | ||
self.cpu_optimizer_state_dict[k] = {} | ||
for kk, vv in v.items(): | ||
self.cpu_optimizer_state_dict[k][kk] = vv.pin_memory() | ||
self.name_mapping[k][kk] = vv.name | ||
elif k == "LR_Scheduler": | ||
self.cpu_optimizer_state_dict[k] = copy.deepcopy(v) | ||
else: | ||
self.cpu_optimizer_state_dict[k] = v.pin_memory() | ||
self.name_mapping[k] = v.name | ||
paddle.device.synchronize() | ||
|
||
def shutdown(self): | ||
self.pool.close() | ||
self.pool.join() | ||
|
||
def __del__(self): | ||
self.shutdown() | ||