-
Notifications
You must be signed in to change notification settings - Fork 16
【PPMat Dataset No.4】tmQM_MEGNet #198
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: develop
Are you sure you want to change the base?
Conversation
|
Thanks for your contribution! |
leeleolay
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
在megnet readme文件中添加这个数据集的训练结果
property_prediction/configs/megnet/megnet_tmqm_train_108k_electronic_e.yaml
Outdated
Show resolved
Hide resolved
| path_bond: "./data/tmqm/tmQM_X.BO" | ||
| electronic_e_key: "electronic_e" | ||
| property_names: ${Global.label_names} | ||
| use_atomic_charge: True |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
这个地方控制是否读取q文件吗?建议写个注释
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
ok
| electronic_e_key: "electronic_e" | ||
| property_names: ${Global.label_names} | ||
| use_atomic_charge: True | ||
| use_chemical_bonding: True |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
同上
| sample_structure = structures[0] | ||
| logger.info(f"Structure object type: {type(sample_structure)}") | ||
| logger.info(f"Structure object attributes: {dir(sample_structure)}") | ||
| # If you use supplementary data, incorporate it into the structure |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
if len(structures) > 0:
sample_structure = structures[0]
logger.info(f"Structure object type: {type(sample_structure)}")
logger.info(f"Structure object attributes: {dir(sample_structure)}")
这块代码的作用是什么
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
在生成结构数据后,获取第一个结构对象作为样本,并通过日志记录其类型和所有可用属性,用于调试和验证 BuildStructure 返回的对象是否符合预期。
并没有完整的训练(所需时间太长,在学校没有始终运行和监督的条件)。数据适配器可以正常运行,我会补充表格中有关数据集信息和配置文件的部分😊 |
| <td nowrap="nowrap">megnet_tmqm_train_108k_dispersion_e</td> | ||
| <td nowrap="nowrap">tmQM_108k</td> | ||
| <td nowrap="nowrap">Dispersion Energy (Hartree)</td> | ||
| <td nowrap="nowrap"> 0.000 / 0.000</td> |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
‘0.000 / 0.000’这里修改为‘-’,
| <td nowrap="nowrap">Electronic Energy (Hartree)</td> | ||
| <td nowrap="nowrap"> 0.000 / 0.000</td> | ||
| <td nowrap="nowrap">1</td> | ||
| <td nowrap="nowrap">~0 hours</td> |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
‘~0 hours’修改为‘-’
PR Category
Dataset adaptation
PR Types
Add adapters
Description
tmQM数据集是一个全面的过渡金属配合物量子化学数据库,包含多个互补的数据文件:.xyz文件提供了在GFN2-xTB级别优化的分子几何结构;.csv文件包含了SMILES分子表示以及在TPSSh/def2SVP级别计算的量子化学属性,包括电子能、色散能、偶极矩、金属电荷、HOMO/LUMO能隙和能量以及极化率;.q文件提供了在TPSSh/def2SVP水平计算的自然原子电荷分布;.BO文件则包含了在GFN2-xTB水平计算的Wiberg键级和原子价指数(其中极化率除外,是在GFN2-xTB水平单独计算的)。
网址: https://www.uiocompcat.info/tmqmdataset
现将.xyz文件的几何结构信息和.csv文件特征属性融合为一个数据集用于训练,同时出于模型适用性提供选择:”是否使用.q文件和.BO文件进行训练“,已在MEGNet模型上测试
示例bash: python property_prediction/train.py -c property_prediction/configs/megnet/megnet_tmqm_train_108k_electronic_e.yaml