Skip to content

Fix bug in detection mAP evaluator. #8778

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Mar 6, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 9 additions & 1 deletion paddle/fluid/operators/detection_map_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -142,7 +142,15 @@ class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput("MAP",
"(Tensor) A tensor with shape [1], store the mAP evaluate "
"result of the detection.");

AddAttr<int>("class_num",
"(int) "
"The class number.");
AddAttr<int>(
"background_label",
"(int, defalut: 0) "
"The index of background label, the background label will be ignored. "
"If set to -1, then all categories will be considered.")
.SetDefault(0);
AddAttr<float>(
"overlap_threshold",
"(float) "
Expand Down
64 changes: 32 additions & 32 deletions paddle/fluid/operators/detection_map_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,7 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
float overlap_threshold = ctx.Attr<float>("overlap_threshold");
float evaluate_difficult = ctx.Attr<bool>("evaluate_difficult");
auto ap_type = GetAPType(ctx.Attr<std::string>("ap_type"));
int class_num = ctx.Attr<int>("class_num");

auto label_lod = in_label->lod();
auto detect_lod = in_detect->lod();
Expand All @@ -95,17 +96,19 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {

if (in_pos_count != nullptr && state) {
GetInputPos(*in_pos_count, *in_true_pos, *in_false_pos, label_pos_count,
true_pos, false_pos);
true_pos, false_pos, class_num);
}

CalcTrueAndFalsePositive(gt_boxes, detect_boxes, evaluate_difficult,
overlap_threshold, label_pos_count, true_pos,
false_pos);

T map = CalcMAP(ap_type, label_pos_count, true_pos, false_pos);
int background_label = ctx.Attr<int>("background_label");
T map = CalcMAP(ap_type, label_pos_count, true_pos, false_pos,
background_label);

GetOutputPos(ctx, label_pos_count, true_pos, false_pos, *out_pos_count,
*out_true_pos, *out_false_pos);
*out_true_pos, *out_false_pos, class_num);

T* map_data = out_map->mutable_data<T>(ctx.GetPlace());
map_data[0] = map;
Expand Down Expand Up @@ -190,24 +193,20 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
const std::map<int, std::vector<std::pair<T, int>>>& false_pos,
framework::Tensor& output_pos_count,
framework::LoDTensor& output_true_pos,
framework::LoDTensor& output_false_pos) const {
int max_class_id = 0;
framework::LoDTensor& output_false_pos, const int class_num) const {
int true_pos_count = 0;
int false_pos_count = 0;
for (auto it = label_pos_count.begin(); it != label_pos_count.end(); ++it) {
int label = it->first;
if (label > max_class_id) max_class_id = label;
int label_num_pos = it->second;
if (label_num_pos == 0 || true_pos.find(label) == true_pos.end())
continue;
auto label_true_pos = true_pos.find(label)->second;
auto label_false_pos = false_pos.find(label)->second;
true_pos_count += label_true_pos.size();
false_pos_count += label_false_pos.size();
for (auto it = true_pos.begin(); it != true_pos.end(); ++it) {
auto tp = it->second;
true_pos_count += tp.size();
}
for (auto it = false_pos.begin(); it != false_pos.end(); ++it) {
auto fp = it->second;
false_pos_count += fp.size();
}

int* pos_count_data = output_pos_count.mutable_data<int>(
framework::make_ddim({max_class_id + 1, 1}), ctx.GetPlace());
framework::make_ddim({class_num, 1}), ctx.GetPlace());

T* true_pos_data = output_true_pos.mutable_data<T>(
framework::make_ddim({true_pos_count, 2}), ctx.GetPlace());
Expand All @@ -217,7 +216,7 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
false_pos_count = 0;
std::vector<size_t> true_pos_starts = {0};
std::vector<size_t> false_pos_starts = {0};
for (int i = 0; i <= max_class_id; ++i) {
for (int i = 0; i < class_num; ++i) {
auto it_count = label_pos_count.find(i);
pos_count_data[i] = 0;
if (it_count != label_pos_count.end()) {
Expand Down Expand Up @@ -258,17 +257,16 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
return;
}

void GetInputPos(
const framework::Tensor& input_pos_count,
const framework::LoDTensor& input_true_pos,
const framework::LoDTensor& input_false_pos,
std::map<int, int>& label_pos_count,
std::map<int, std::vector<std::pair<T, int>>>& true_pos,
std::map<int, std::vector<std::pair<T, int>>>& false_pos) const {
void GetInputPos(const framework::Tensor& input_pos_count,
const framework::LoDTensor& input_true_pos,
const framework::LoDTensor& input_false_pos,
std::map<int, int>& label_pos_count,
std::map<int, std::vector<std::pair<T, int>>>& true_pos,
std::map<int, std::vector<std::pair<T, int>>>& false_pos,
const int class_num) const {
constexpr T kEPS = static_cast<T>(1e-6);
int class_number = input_pos_count.dims()[0];
const int* pos_count_data = input_pos_count.data<int>();
for (int i = 0; i < class_number; ++i) {
for (int i = 0; i < class_num; ++i) {
label_pos_count[i] = pos_count_data[i];
}

Expand Down Expand Up @@ -391,17 +389,19 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
}
}

T CalcMAP(
APType ap_type, const std::map<int, int>& label_pos_count,
const std::map<int, std::vector<std::pair<T, int>>>& true_pos,
const std::map<int, std::vector<std::pair<T, int>>>& false_pos) const {
T CalcMAP(APType ap_type, const std::map<int, int>& label_pos_count,
const std::map<int, std::vector<std::pair<T, int>>>& true_pos,
const std::map<int, std::vector<std::pair<T, int>>>& false_pos,
const int background_label) const {
T mAP = 0.0;
int count = 0;
for (auto it = label_pos_count.begin(); it != label_pos_count.end(); ++it) {
int label = it->first;
int label_num_pos = it->second;
if (label_num_pos == 0 || true_pos.find(label) == true_pos.end())
if (label_num_pos == background_label ||
true_pos.find(label) == true_pos.end()) {
continue;
}
auto label_true_pos = true_pos.find(label)->second;
auto label_false_pos = false_pos.find(label)->second;
// Compute average precision.
Expand Down Expand Up @@ -450,7 +450,7 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
}
}
if (count != 0) mAP /= count;
return mAP * 100;
return mAP;
}
}; // namespace operators

Expand Down
2 changes: 1 addition & 1 deletion paddle/fluid/operators/multiclass_nms_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -324,7 +324,7 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
" Please note, M is equal to the 1st dimension of BBoxes. ");
AddAttr<int>(
"background_label",
"(int64_t, defalut: 0) "
"(int, defalut: 0) "
"The index of background label, the background label will be ignored. "
"If set to -1, then all categories will be considered.")
.SetDefault(0);
Expand Down
10 changes: 10 additions & 0 deletions python/paddle/fluid/evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -312,6 +312,10 @@ class DetectionMAP(Evaluator):
bounding box (bbox), which is a LoDTensor [N, 1].
gt_box (Variable): The ground truth bounding box (bbox), which is a
LoDTensor with shape [N, 6]. The layout is [xmin, ymin, xmax, ymax].
class_num (int): The class number.
background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all categories will be
considered, 0 by defalut.
overlap_threshold (float): The threshold for deciding true/false
positive, 0.5 by defalut.
evaluate_difficult (bool): Whether to consider difficult ground truth
Expand Down Expand Up @@ -345,6 +349,8 @@ def __init__(self,
gt_label,
gt_box,
gt_difficult,
class_num,
background_label=0,
overlap_threshold=0.5,
evaluate_difficult=True,
ap_version='integral'):
Expand All @@ -358,6 +364,8 @@ def __init__(self,
map = layers.detection_map(
input,
label,
class_num,
background_label,
overlap_threshold=overlap_threshold,
evaluate_difficult=evaluate_difficult,
ap_version=ap_version)
Expand All @@ -377,6 +385,8 @@ def __init__(self,
accum_map = layers.detection_map(
input,
label,
class_num,
background_label,
overlap_threshold=overlap_threshold,
evaluate_difficult=evaluate_difficult,
has_state=self.has_state,
Expand Down
5 changes: 4 additions & 1 deletion python/paddle/fluid/layers/detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,8 @@ class number, M is number of bounding boxes. For each category
@autodoc()
def detection_map(detect_res,
label,
class_num,
background_label=0,
overlap_threshold=0.3,
evaluate_difficult=True,
has_state=None,
Expand Down Expand Up @@ -192,7 +194,8 @@ def __create_var(type):
attrs={
'overlap_threshold': overlap_threshold,
'evaluate_difficult': evaluate_difficult,
'ap_type': ap_version
'ap_type': ap_version,
'class_num': class_num,
})
return map_out

Expand Down
2 changes: 1 addition & 1 deletion python/paddle/fluid/tests/test_detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,7 @@ def test_detection_map(self):
append_batch_size=False,
dtype='float32')

map_out = layers.detection_map(detect_res=detect_res, label=label)
map_out = layers.detection_map(detect_res, label, 21)
self.assertIsNotNone(map_out)
self.assertEqual(map_out.shape, (1, ))
print(str(program))
Expand Down
23 changes: 12 additions & 11 deletions python/paddle/fluid/tests/unittests/test_detection_map_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,8 @@

class TestDetectionMAPOp(OpTest):
def set_data(self):
self.class_num = 4
self.init_test_case()

self.mAP = [self.calc_map(self.tf_pos, self.tf_pos_lod)]
self.label = np.array(self.label).astype('float32')
self.detect = np.array(self.detect).astype('float32')
Expand Down Expand Up @@ -53,7 +53,8 @@ def set_data(self):
self.attrs = {
'overlap_threshold': self.overlap_threshold,
'evaluate_difficult': self.evaluate_difficult,
'ap_type': self.ap_type
'ap_type': self.ap_type,
'class_num': self.class_num
}

self.out_class_pos_count = np.array(self.out_class_pos_count).astype(
Expand Down Expand Up @@ -126,12 +127,7 @@ def get_input_pos(class_pos_count, true_pos, true_pos_lod, false_pos,
return class_pos_count_dict, true_pos_dict, false_pos_dict

def get_output_pos(label_count, true_pos, false_pos):
max_label = 0
for (label, label_pos_num) in label_count.items():
if max_label < label:
max_label = label

label_number = max_label + 1
label_number = self.class_num

out_class_pos_count = []
out_true_pos_lod = [0]
Expand Down Expand Up @@ -220,11 +216,16 @@ def get_accumulation(pos_list):

mAP += average_precisions
count += 1
self.out_class_pos_count, self.out_true_pos, self.out_true_pos_lod, self.out_false_pos, self.out_false_pos_lod = get_output_pos(
label_count, true_pos, false_pos)
pcnt, tp, tp_lod, fp, fp_lod = get_output_pos(label_count, true_pos,
false_pos)
self.out_class_pos_count = pcnt
self.out_true_pos = tp
self.out_true_pos_lod = tp_lod
self.out_false_pos = fp
self.out_false_pos_lod = fp_lod
if count != 0:
mAP /= count
return mAP * 100.0
return mAP

def setUp(self):
self.op_type = "detection_map"
Expand Down