-
Notifications
You must be signed in to change notification settings - Fork 5.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
priorbox layer for Single Shot Multibox Detection Network #867
Changes from 13 commits
0eac399
39d689e
9600932
c007608
707a9c9
520342e
1048aee
9f990d9
8d9f675
cad325f
38723e7
7dfe3bd
6f8f468
f202929
8d24931
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "Layer.h" | ||
#include "paddle/math/BaseMatrix.h" | ||
#include "paddle/math/Matrix.h" | ||
|
||
namespace paddle { | ||
/** | ||
* @brief A layer for generate prior box locations and variances. | ||
* - Input: Two and only two input layer are accepted. The input layer must be | ||
* be a data output layer and a convolution output layer. | ||
* - Output: The prior box locations and variances of the input data. | ||
* Reference: | ||
* Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, | ||
* Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox Detector | ||
*/ | ||
|
||
class PriorBoxLayer : public Layer { | ||
public: | ||
explicit PriorBoxLayer(const LayerConfig& config) : Layer(config) {} | ||
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap); | ||
void forward(PassType passType); | ||
void backward(const UpdateCallback& callback) {} | ||
int numPriors_; | ||
std::vector<int> minSize_; | ||
std::vector<int> maxSize_; | ||
std::vector<float> aspectRatio_; | ||
std::vector<float> variance_; | ||
MatrixPtr buffer_; | ||
}; | ||
|
||
bool PriorBoxLayer::init(const LayerMap& layerMap, | ||
const ParameterMap& parameterMap) { | ||
Layer::init(layerMap, parameterMap); | ||
auto pbConf = config_.inputs(0).priorbox_conf(); | ||
std::copy(pbConf.min_size().begin(), | ||
pbConf.min_size().end(), | ||
std::back_inserter(minSize_)); | ||
std::copy(pbConf.max_size().begin(), | ||
pbConf.max_size().end(), | ||
std::back_inserter(maxSize_)); | ||
std::copy(pbConf.aspect_ratio().begin(), | ||
pbConf.aspect_ratio().end(), | ||
std::back_inserter(aspectRatio_)); | ||
std::copy(pbConf.variance().begin(), | ||
pbConf.variance().end(), | ||
std::back_inserter(variance_)); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 可以先用一个临时变量来记录config_.inputs(0).priorbox_conf(),38-49行不用重复写那么多了 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 好的 |
||
// flip | ||
int inputRatioLength = aspectRatio_.size(); | ||
for (int index = 0; index < inputRatioLength; index++) | ||
aspectRatio_.push_back(1 / aspectRatio_[index]); | ||
aspectRatio_.push_back(1.); | ||
numPriors_ = aspectRatio_.size(); | ||
if (maxSize_.size() > 0) numPriors_++; | ||
return true; | ||
} | ||
|
||
void PriorBoxLayer::forward(PassType passType) { | ||
Layer::forward(passType); | ||
auto input = getInput(0); | ||
int layerWidth = input.getFrameWidth(); | ||
int layerHeight = input.getFrameHeight(); | ||
|
||
auto image = getInput(1); | ||
int imageWidth = image.getFrameWidth(); | ||
int imageHeight = image.getFrameHeight(); | ||
|
||
float stepW = static_cast<float>(imageWidth) / layerWidth; | ||
float stepH = static_cast<float>(imageHeight) / layerHeight; | ||
int dim = layerHeight * layerWidth * numPriors_ * 4; | ||
reserveOutput(1, dim * 2); | ||
// use a cpu buffer to compute | ||
Matrix::resizeOrCreate(buffer_, 1, dim * 2, false, false); | ||
auto* tmpPtr = buffer_->getData(); | ||
|
||
int idx = 0; | ||
for (int h = 0; h < layerHeight; ++h) { | ||
for (int w = 0; w < layerWidth; ++w) { | ||
float centerX = (w + 0.5) * stepW; | ||
float centerY = (h + 0.5) * stepH; | ||
int minSize = 0; | ||
for (size_t s = 0; s < minSize_.size(); s++) { | ||
// first prior. | ||
minSize = minSize_[s]; | ||
int boxWidth = minSize; | ||
int boxHeight = minSize; | ||
// xmin, ymin, xmax, ymax. | ||
tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth; | ||
tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight; | ||
tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth; | ||
tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight; | ||
// set the variance. | ||
for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t]; | ||
|
||
if (maxSize_.size() > 0) { | ||
CHECK_EQ(minSize_.size(), maxSize_.size()); | ||
// second prior. | ||
for (size_t s = 0; s < maxSize_.size(); s++) { | ||
int maxSize = maxSize_[s]; | ||
boxWidth = boxHeight = sqrt(minSize * maxSize); | ||
tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth; | ||
tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight; | ||
tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth; | ||
tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight; | ||
// set the variance. | ||
for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t]; | ||
} | ||
} | ||
} | ||
// rest of priors. | ||
for (size_t r = 0; r < aspectRatio_.size(); r++) { | ||
float ar = aspectRatio_[r]; | ||
if (fabs(ar - 1.) < 1e-6) continue; | ||
float boxWidth = minSize * sqrt(ar); | ||
float boxHeight = minSize / sqrt(ar); | ||
tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth; | ||
tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight; | ||
tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth; | ||
tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight; | ||
// set the variance. | ||
for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t]; | ||
} | ||
} | ||
} | ||
// clip the prior's coordidate such that it is within [0, 1] | ||
for (int d = 0; d < dim * 2; ++d) | ||
if ((d % 8) < 4) | ||
tmpPtr[d] = std::min(std::max(tmpPtr[d], (float)0.), (float)1.); | ||
MatrixPtr outV = getOutputValue(); | ||
outV->copyFrom(buffer_->data_, dim * 2); | ||
} | ||
REGISTER_LAYER(priorbox, PriorBoxLayer); | ||
|
||
} // namespace paddle |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,212 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include <gtest/gtest.h> | ||
#include <string> | ||
#include <vector> | ||
|
||
#include "LayerGradUtil.h" | ||
#include "TestUtil.h" | ||
|
||
using namespace paddle; // NOLINT | ||
using namespace std; // NOLINT | ||
|
||
// Do one forward pass of priorBox layer and check to see if its output | ||
// matches the given result | ||
void doOnePriorBoxTest(size_t feature_map_width, | ||
size_t feature_map_height, | ||
size_t image_width, | ||
size_t image_height, | ||
vector<int> min_size, | ||
vector<int> max_size, | ||
vector<float> aspect_ratio, | ||
vector<float> variance, | ||
bool use_gpu, | ||
MatrixPtr& result) { | ||
// Setting up the priorbox layer | ||
TestConfig configt; | ||
configt.layerConfig.set_type("priorbox"); | ||
|
||
configt.inputDefs.push_back({INPUT_DATA, "featureMap", 1, 0}); | ||
LayerInputConfig* input = configt.layerConfig.add_inputs(); | ||
configt.inputDefs.push_back({INPUT_DATA, "image", 1, 0}); | ||
configt.layerConfig.add_inputs(); | ||
PriorBoxConfig* pb = input->mutable_priorbox_conf(); | ||
for (size_t i = 0; i < min_size.size(); i++) pb->add_min_size(min_size[i]); | ||
for (size_t i = 0; i < max_size.size(); i++) pb->add_max_size(max_size[i]); | ||
for (size_t i = 0; i < variance.size(); i++) pb->add_variance(variance[i]); | ||
for (size_t i = 0; i < aspect_ratio.size(); i++) | ||
pb->add_aspect_ratio(aspect_ratio[i]); | ||
|
||
// data layer initialize | ||
std::vector<DataLayerPtr> dataLayers; | ||
LayerMap layerMap; | ||
vector<Argument> datas; | ||
initDataLayer( | ||
configt, &dataLayers, &datas, &layerMap, "priorbox", 1, false, use_gpu); | ||
dataLayers[0]->getOutput().setFrameHeight(feature_map_height); | ||
dataLayers[0]->getOutput().setFrameWidth(feature_map_width); | ||
dataLayers[1]->getOutput().setFrameHeight(image_height); | ||
dataLayers[1]->getOutput().setFrameWidth(image_width); | ||
|
||
// test layer initialize | ||
std::vector<ParameterPtr> parameters; | ||
LayerPtr priorboxLayer; | ||
initTestLayer(configt, &layerMap, ¶meters, &priorboxLayer); | ||
priorboxLayer->forward(PASS_GC); | ||
checkMatrixEqual(priorboxLayer->getOutputValue(), result); | ||
} | ||
|
||
TEST(Layer, priorBoxLayerFwd) { | ||
vector<int> minSize; | ||
vector<int> maxSize; | ||
vector<float> aspectRatio; | ||
vector<float> variance; | ||
bool useGpu = false; | ||
|
||
minSize.push_back(276); | ||
maxSize.push_back(330); | ||
variance.push_back(0.1); | ||
variance.push_back(0.1); | ||
variance.push_back(0.2); | ||
variance.push_back(0.2); | ||
|
||
// CPU case 1. | ||
MatrixPtr result; | ||
float resultData[] = {0.04, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 额, 由 #967 注意到,这里得改成 real, 下同 :) There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 已修改 |
||
0.04, | ||
0.96, | ||
0.96, | ||
0.1, | ||
0.1, | ||
0.2, | ||
0.2, | ||
0, | ||
0, | ||
1, | ||
1, | ||
0.1, | ||
0.1, | ||
0.2, | ||
0.2}; | ||
result = Matrix::create(1, 2 * 8, false, useGpu); | ||
result->setData(resultData); | ||
doOnePriorBoxTest(/* feature_map_width */ 1, | ||
/* feature_map_height */ 1, | ||
/* image_width */ 300, | ||
/* image_height */ 300, | ||
minSize, | ||
maxSize, | ||
aspectRatio, | ||
variance, | ||
useGpu, | ||
result); | ||
// CPU case 2. | ||
variance[1] = 0.2; | ||
variance[3] = 0.1; | ||
maxSize.pop_back(); | ||
float resultData2[] = {0, 0, 0.595, 0.595, 0.1, 0.2, 0.2, 0.1, | ||
0.405, 0, 1, 0.595, 0.1, 0.2, 0.2, 0.1, | ||
0, 0.405, 0.595, 1, 0.1, 0.2, 0.2, 0.1, | ||
0.405, 0.405, 1, 1, 0.1, 0.2, 0.2, 0.1}; | ||
Matrix::resizeOrCreate(result, 1, 4 * 8, false, useGpu); | ||
result->setData(resultData2); | ||
doOnePriorBoxTest(/* feature_map_width */ 2, | ||
/* feature_map_height */ 2, | ||
/* image_width */ 400, | ||
/* image_height */ 400, | ||
minSize, | ||
maxSize, | ||
aspectRatio, | ||
variance, | ||
useGpu, | ||
result); | ||
// CPU case 3. | ||
aspectRatio.push_back(2); | ||
float resultData3[] = {0.04, 0.04, 0.96, 0.96, 0.1, 0.2, | ||
0.2, 0.1, 0, 0.17473088, 1, 0.825269, | ||
0.1, 0.2, 0.2, 0.1, 0.17473088, 0, | ||
0.825269, 1, 0.1, 0.2, 0.2, 0.1}; | ||
Matrix::resizeOrCreate(result, 1, 3 * 8, false, useGpu); | ||
result->setData(resultData3); | ||
doOnePriorBoxTest(/* feature_map_width */ 1, | ||
/* feature_map_height */ 1, | ||
/* image_width */ 300, | ||
/* image_height */ 300, | ||
minSize, | ||
maxSize, | ||
aspectRatio, | ||
variance, | ||
useGpu, | ||
result); | ||
|
||
#ifndef PADDLE_ONLY_CPU | ||
// reset the input parameters | ||
variance[1] = 0.1; | ||
variance[3] = 0.2; | ||
maxSize.push_back(330); | ||
aspectRatio.pop_back(); | ||
MatrixPtr resultGpu; | ||
useGpu = true; | ||
// GPU case 1. | ||
resultGpu = Matrix::create(1, 2 * 8, false, useGpu); | ||
resultGpu->copyFrom(resultData, 2 * 8); | ||
doOnePriorBoxTest(/* feature_map_width */ 1, | ||
/* feature_map_height */ 1, | ||
/* image_width */ 300, | ||
/* image_height */ 300, | ||
minSize, | ||
maxSize, | ||
aspectRatio, | ||
variance, | ||
useGpu, | ||
resultGpu); | ||
// GPU case 2. | ||
variance[1] = 0.2; | ||
variance[3] = 0.1; | ||
maxSize.pop_back(); | ||
Matrix::resizeOrCreate(resultGpu, 1, 4 * 8, false, useGpu); | ||
resultGpu->copyFrom(resultData2, 4 * 8); | ||
doOnePriorBoxTest(/* feature_map_width */ 2, | ||
/* feature_map_height */ 2, | ||
/* image_width */ 400, | ||
/* image_height */ 400, | ||
minSize, | ||
maxSize, | ||
aspectRatio, | ||
variance, | ||
useGpu, | ||
resultGpu); | ||
// GPU case 3. | ||
aspectRatio.push_back(2); | ||
Matrix::resizeOrCreate(resultGpu, 1, 3 * 8, false, useGpu); | ||
resultGpu->copyFrom(resultData3, 3 * 8); | ||
doOnePriorBoxTest(/* feature_map_width */ 1, | ||
/* feature_map_height */ 1, | ||
/* image_width */ 300, | ||
/* image_height */ 300, | ||
minSize, | ||
maxSize, | ||
aspectRatio, | ||
variance, | ||
useGpu, | ||
resultGpu); | ||
#endif | ||
} | ||
|
||
int main(int argc, char** argv) { | ||
testing::InitGoogleTest(&argc, argv); | ||
initMain(argc, argv); | ||
return RUN_ALL_TESTS(); | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
添加注释。
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
已添加