Skip to content

Conversation

@zhengshengning
Copy link
Contributor

@zhengshengning zhengshengning commented Sep 26, 2025

PR Category

Operator Mechanism

PR Types

New features

Description

PR描述:

  1. 复数 expm1 实现优化

    • 旧版:调用通用的 Expm1<ComplexType<T>>()(x)
    • 新版:实现了专门的 local_expm1 函数,使用数学公式:
      // expm1(z) = expm1(x+iy) 的优化实现
      er = expm1(x) * cos(y) - 2 * sin²(y/2)
      ei = exp(x) * sin(y)
  2. 梯度计算修正
    dout * out + dout 改为 dout * (out + 1)

测试结果:
paddle.expm1 全部与torch对齐(测试case 18 个)

pcard-93269

Copy link
Contributor

@A-nnonymous A-nnonymous left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

@zhengshengning zhengshengning merged commit c66d194 into PaddlePaddle:develop Sep 28, 2025
72 of 78 checks passed
zhengshengning added a commit to zhengshengning/Paddle that referenced this pull request Oct 24, 2025
zhengshengning added a commit to zhengshengning/Paddle that referenced this pull request Oct 24, 2025
zhengshengning added a commit that referenced this pull request Oct 27, 2025
* CallScalarFunction uses the dtype of 'self' as the type of 'other' when opotype is 'div'(#75237)

* LinspaceKernel uses the dtype of 'self' as the type of 'step' when tensor is floating (#75238)

* align LinspaceKernel

* update meta

* update gpu kernel

* fix LinspaceKernelInner

* improve kernel

* fix CudaSigmoidGradFunctor and CudaSiluGradFunctor (#75341)

* Softplus accuracy and torch alignment 1 (#75363)

* [Precision Depth Alignment] paddle.tan reverse calculation: dx = dout *(1 + tan(x)^2) (#75335)

* Tan reverse calculation: dx = dout *(1 + tan(x)^2)

* [Precision Depth Alignment] Add support for CUDNN to paddle.nn.functional.grid_sample to align with torch accuracy.  (#75355)

* accuracy_stable_grid_sample

* fix

* correlation supports big tensor (#75383)

* fix

* fix test

* fix

* paddle.tanh Grad and torch alignment (float16) (#75454)

* [Precision Depth Alignment] paddle.sin and paddle.cos aligns with torch precision. (#75503)

* accuracy_stable_sin

* accuracy_stable_cos

* [深度对齐]Divide (#75379)

* fix

* fix

* fix

* fix

* fix

* [Precision Depth Alignment] fix precision for float16 of paddle.tan backward (#75525)

* fix precision for float16 of paddle.tan backward

* fix else branch of CudaTanGradFunctor

* [Precision Depth Alignment] fix precision for  paddle.expm1 (#75549)

* accuracy_stable_expm1

* fix

* Bigtensor排查修复[Paddle/paddle/phi/kernels/funcs] (#75523)

* fix

* fix

* [Precision Depth Alignment]  fix beta and threshold of paddle.nn.functional.softplus  to double (#75426)

* fix beta and threshold of Softplus to double

* fix test_softplus_activation_fuse_pass v1

* fix test_activation_zero

* fix flaot of SoftplusDoubleGradKernel to double

* add op_patches for softplus

* add yaml for ops/yaml/legacy

* fix infershape/operator for FLOAT64

* fix

* add SoftPlusOpTranscriber

* fix

* fix

* fix1

* fix2

* fix coverage

* fix coverage2

* fix (#75605)

* [深度对齐] dot (#75717)

* fix

* fix

* fix dcu

* [Precision Depth Alignment]  paddle.log aligns with torch precision (#75799)

* accuracy_stable_log

* accuracy_stable_log

* fix

* fix

* fix

* fix

* fix5

* [Precision Depth Alignment] fix eps of paddle.logit from float to double (#75816)

* accuracy_stable_logit

* add LogitOpTranscriber

* fix coverage

* fix 0yaml

* [Precision Depth Alignment] paddle.log_sigmoid (#75898)

* accuracy_stable_log_sigmoid

* fix test_activation_stride_op.py

* [Precision Depth Alignment] Modify the negative_slope parameter of the paddle.nn.functional.leaky_relu API to double (#75547)

* [big tensor] Paddle/paddle/phi/kernels/funcs gpuBigtensor (#75856)

* fix funcs

* gpu

* fix

* fix

* 修改PADDLE_ENFORCE信息

* fix cpu error

* fix dcu

* fix dcu

* fix

* [Fix] log sigmoid complex (#75953)

* feature: Add specialized LogSigmoidFunctor and CudaLogSigmoidFunctor for complex numbers

This commit introduces specialized implementations of LogSigmoidFunctor and CudaLogSigmoidFunctor to handle complex number inputs. The new implementations utilize direct formulas for improved accuracy and stability in calculations involving complex types.

* refactor: Optimize LogSigmoidFunctor and CudaLogSigmoidFunctor for complex types by caching exp(-x) to reduce redundant computations. This change enhances performance while maintaining accuracy in calculations.

* refactor: modified the formula in LogSigmoidFunctor to make it numerical stable

---------

Co-authored-by: Zhan Rongrui <46243324+zrr1999@users.noreply.github.com>
Co-authored-by: 正在学习 <62892980+cszdrg@users.noreply.github.com>
Co-authored-by: Bvicii <98971614+scyyh11@users.noreply.github.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants