Skip to content

[Inference]Add expand and expand_as converter #68546

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Oct 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions paddle/fluid/pir/transforms/tensorrt/trt_op_marker_pass.cc
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,7 @@ DEFINE_GENERAL_PATTERN(FusedConv2dAddAct, paddle::dialect::FusedConv2dAddActOp)
DEFINE_GENERAL_PATTERN(DepthwiseConv2d, paddle::dialect::DepthwiseConv2dOp)
DEFINE_GENERAL_PATTERN(Shape, paddle::dialect::ShapeOp)
DEFINE_GENERAL_PATTERN(Expand, paddle::dialect::ExpandOp)
DEFINE_GENERAL_PATTERN(ExpandAs, paddle::dialect::ExpandAsOp)
DEFINE_GENERAL_PATTERN(Sigmoid, paddle::dialect::SigmoidOp)
DEFINE_GENERAL_PATTERN(Sqrt, paddle::dialect::SqrtOp)
DEFINE_GENERAL_PATTERN(Hardsigmoid, paddle::dialect::HardsigmoidOp)
Expand Down Expand Up @@ -1308,6 +1309,7 @@ class TrtOpMarkerPass : public pir::PatternRewritePass {
ADD_PATTERN(Gelu)
ADD_PATTERN(Shape)
ADD_PATTERN(Expand)
ADD_PATTERN(ExpandAs)
ADD_PATTERN(Sigmoid)
ADD_PATTERN(Sqrt)
ADD_PATTERN(Hardsigmoid)
Expand Down
4 changes: 3 additions & 1 deletion python/paddle/tensorrt/converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,17 +180,19 @@ def convert_subgraph_to_trt(self, program, group_op):
continue
define_op_name = source.get_defining_op().name()
if define_op_name == "builtin.combine":
operand_list = []
for combined_operand in source.get_defining_op().operands():
combined_source = combined_operand.source()
combined_source_id = combined_source.id
if combined_source_id in value_to_trt_tensor:
operands.append(
operand_list.append(
value_to_trt_tensor[combined_source_id]
)
else:
raise RuntimeError(
f'{combined_source_id} not found in value_to_trt_tensor'
)
operands.append(operand_list)
else:
source_id = source.id
if source_id in value_to_trt_tensor:
Expand Down
40 changes: 39 additions & 1 deletion python/paddle/tensorrt/converter_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,9 @@
__name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s'
)

version = trt.__version__
version_list = list(map(int, version.split('.')))


def has_dynamic_shape(shape):
return any(s == -1 for s in shape)
Expand Down Expand Up @@ -159,11 +162,46 @@ def add_elementwise_layer(network, paddle_op, inputs, op_type):

# Create and add 1D constant layer
def add_1D_constant_layer(network, data, dtype=np.int32):
constant_data = np.array([data], dtype=dtype)
if not isinstance(data, list):
data = [data]
constant_data = np.array(data, dtype=dtype)
constant_layer = network.add_constant(constant_data.shape, constant_data)
return constant_layer.get_output(0)


# Concat not make rank changed
def trt_concat(network, inputs, axis=0):
concat_layer = network.add_concatenation(inputs=inputs)
if axis != 0:
concat_layer.axis = axis
return concat_layer.get_output(0)


def trt_cast(network, input, dtype):
identity_layer = network.add_identity(input)
identity_layer.set_output_type(0, dtype)
identity_layer.get_output(0).dtype = dtype
return identity_layer.get_output(0)


def trt_shape(network, input):
shape_layer = network.add_shape(input)
if version_list[0] >= 10: # trt_version >=10
return trt_cast(network, shape_layer.get_output(0), trt.int32)
return shape_layer.get_output(0)


def trt_reshape(network, input, new_shape, name="", is_shape_tensor=False):
reshape_layer = network.add_shuffle(input)
if is_shape_tensor:
reshape_layer.set_input(1, new_shape)
else:
reshape_layer.reshape_dims = new_shape
if name != "":
reshape_layer.name = name
return reshape_layer.get_output(0)


# Get element tensor of 1D shape tensor
def get_shape_tensor_element(network, x, index):
assert index >= 0, (
Expand Down
85 changes: 79 additions & 6 deletions python/paddle/tensorrt/impls/manipulation.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,11 @@
get_positive_dim,
get_shape_tensor_element,
has_dynamic_shape,
trt_concat,
trt_max,
trt_min,
trt_reshape,
trt_shape,
trt_sub,
trt_sum,
)
Expand Down Expand Up @@ -156,8 +159,8 @@ def flatten_converter(network, paddle_op, inputs):
# In the converter, pd_op.concat has three inputs, because builtin.combine has two inputs.
@converter_registry.register("pd_op.concat", trt_version="8.x")
def concat_converter(network, paddle_op, inputs):
input_tensors = inputs[:-1]
axis_tensor = inputs[-1]
input_tensors = inputs[0]
axis_tensor = inputs[1]
concat_layer = network.add_concatenation(inputs=input_tensors)

axis = paddle_op.operands()[1].source().get_defining_op().attrs()["value"]
Expand Down Expand Up @@ -214,6 +217,76 @@ def squeeze_converter(network, paddle_op, inputs):
return layer.get_output(0)


def get_expand_output(network, input, rank, shape_tensor, shape_rank):
if rank < shape_rank:
one_rank_tensor = add_1D_constant_layer(
network, [1] * (shape_rank - rank)
)
in_shape_tensor = trt_shape(network, input)
itensors = [one_rank_tensor, in_shape_tensor]
input_shape_tensor = trt_concat(network, itensors)
else:
input_shape_tensor = trt_shape(network, input)

new_input_tensor = trt_reshape(network, input, input_shape_tensor, "", True)

start = [0] * shape_rank
starts_tensor = add_1D_constant_layer(network, start)
one_tensor = add_1D_constant_layer(network, 1)
sizes_tensor = trt_max(network, input_shape_tensor, shape_tensor)
input_sub_tensor = trt_sub(network, input_shape_tensor, one_tensor)
strides_tensor = trt_min(network, one_tensor, input_sub_tensor)

slice_layer = network.add_slice(
new_input_tensor, start, [0] * len(start), [0] * len(start)
)
slice_layer.set_input(1, starts_tensor)
slice_layer.set_input(2, sizes_tensor)
slice_layer.set_input(3, strides_tensor)

return slice_layer.get_output(0)


@converter_registry.register("pd_op.expand", trt_version="8.x")
def expand_converter(network, paddle_op, inputs):
input = inputs[0]
input_dims = input.shape
rank = len(input_dims)
paddle_shape_tensor = paddle_op.operands()[1].source()

shape_tensor_source_op = paddle_shape_tensor.get_defining_op()
if shape_tensor_source_op.name() == "pd_op.full_int_array":
shape = shape_tensor_source_op.attrs()["value"]
shape_tensor = add_1D_constant_layer(network, shape)
shape_rank = len(shape)
elif paddle_shape_tensor.type().as_vec_type():
shape_tensors = inputs[1]
shape_rank = len(shape_tensors)
shape_tensor = trt_concat(network, shape_tensors)
else:
shape_tensor = inputs[1]
shape_rank = shape_tensor.shape[0]
return get_expand_output(network, input, rank, shape_tensor, shape_rank)


@converter_registry.register("pd_op.expand_as", trt_version="8.x")
def expand_as_converter(network, paddle_op, inputs):
input = inputs[0]
input_dims = input.shape
rank = len(input_dims)
y = paddle_op.operands()[1].source()

if y.initialized():
y_t = inputs[1]
shape_tensor = trt_shape(network, y_t)
shape_rank = len(y_t.shape)
else:
shape = paddle_op.attrs().get("target_shape")
shape_tensor = add_1D_constant_layer(network, shape)
shape_rank = len(shape)
return get_expand_output(network, input, rank, shape_tensor, shape_rank)


@converter_registry.register("pd_op.cast", trt_version="8.x")
@converter_registry.register("pd_op.cast_", trt_version="8.x")
def cast_converter(network, paddle_op, inputs):
Expand Down Expand Up @@ -270,7 +343,7 @@ def slice_converter(network, paddle_op, inputs):
len(starts),
len(axes),
)
for idx in axes:
for idx in range(len(axes)):
if starts[idx] < 0:
starts_tensor[axes[idx]] = trt_max(
network,
Expand All @@ -293,7 +366,7 @@ def slice_converter(network, paddle_op, inputs):
)
else:
starts = inputs[1]
for idx in axes:
for idx in range(len(axes)):
starts_tensor[axes[idx]] = get_shape_tensor_element(
network, starts, idx
)
Expand All @@ -306,7 +379,7 @@ def slice_converter(network, paddle_op, inputs):
len(ends),
len(axes),
)
for idx in axes:
for idx in range(len(axes)):
if ends[idx] < 0:
ends_tensor[axes[idx]] = trt_max(
network,
Expand All @@ -329,7 +402,7 @@ def slice_converter(network, paddle_op, inputs):
)
else:
ends = inputs[2]
for idx in axes:
for idx in range(len(axes)):
ends_tensor[axes[idx]] = get_shape_tensor_element(
network, ends, idx
)
Expand Down
62 changes: 62 additions & 0 deletions test/tensorrt/test_converter_manipulation.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,36 @@ def test_trt_result(self):
self.check_trt_result()


class TestExpandTRTPattern(TensorRTBaseTest):
def setUp(self):
self.python_api = paddle.expand
self.api_args = {
"x": np.random.randn(1, 3).astype("float32"),
"shape": [6, 3],
}
self.program_config = {"feed_list": ["x"]}
self.min_shape = {"x": [1, 3]}
self.max_shape = {"x": [6, 3]}

def test_trt_result(self):
self.check_trt_result()


class TestExpandWithShapeTensorTRTPattern(TensorRTBaseTest):
def setUp(self):
self.python_api = paddle.expand
self.api_args = {
"x": np.random.randn(1, 3).astype("float32"),
"shape": np.array([6, 3]).astype("int32"),
}
self.program_config = {"feed_list": ["x", "shape"]}
self.min_shape = {"x": [1, 3]}
self.max_shape = {"x": [6, 3]}

def test_trt_result(self):
self.check_trt_result()


def slice_api(x, axes, starts, ends, infer_flags, decrease_axis):
return _C_ops.slice(x, axes, starts, ends, infer_flags, decrease_axis)

Expand All @@ -115,6 +145,21 @@ def test_trt_result(self):
self.check_trt_result()


class TestExpandWithDiffRankTRTPattern(TensorRTBaseTest):
def setUp(self):
self.python_api = paddle.expand
self.api_args = {
"x": np.array([1, 2, 3]).astype("float32"),
"shape": [2, 3],
}
self.program_config = {"feed_list": ["x"]}
self.min_shape = {}
self.max_shape = {}

def test_trt_result(self):
self.check_trt_result()


class TestSliceTRTPattern(TensorRTBaseTest):
def setUp(self):
self.python_api = paddle.slice
Expand All @@ -132,6 +177,23 @@ def test_trt_result(self):
self.check_trt_result()


class TestExpandAsTRTPattern(TensorRTBaseTest):
def setUp(self):
self.python_api = paddle.expand_as
self.api_args = {
"x": np.array([[1, 2, 3]]).astype("float32"),
"y": np.array([[1, 2, 3], [4, 5, 6], [1, 2, 3], [4, 5, 6]]).astype(
"int32"
),
}
self.program_config = {"feed_list": ["x", "y"]}
self.min_shape = {"x": [1, 3]}
self.max_shape = {"x": [4, 3]}

def test_trt_result(self):
self.check_trt_result()


class TestSliceWithInputStartTRTPattern(TensorRTBaseTest):
def setUp(self):
self.python_api = paddle.slice
Expand Down