Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

dist2dense_pass fix shape errors in shard randomly sampled data #68067

Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
add unit test case
  • Loading branch information
jeff41404 committed Sep 9, 2024
commit 73d6908070d3949545c9b6968e745fa3d77f9e62
62 changes: 62 additions & 0 deletions test/auto_parallel/pir/test_static_pir_program.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@

import paddle
import paddle.distributed as dist
from paddle.base.libpaddle.pir import apply_dist2dense_pass
from paddle.distributed.auto_parallel.static.mix_to_dist_pass import (
apply_mix2dist_pass,
)
Expand Down Expand Up @@ -228,6 +229,67 @@ def test_build_with_apply_mix2dist_pass(self):
self.assertEqual(input2_shape.dist_attr().process_mesh, mesh)
self.assertEqual(input2_shape.dist_attr().dims_mapping, [-1])

def test_build_with_apply_dist2dense_pass(self):
paddle.enable_static()
with paddle.pir_utils.IrGuard():
main_program = paddle.base.Program()
with paddle.base.program_guard(main_program):
mesh = dist.ProcessMesh([0, 1], dim_names=['dp'])
input1 = paddle.randint(low=0, high=1000, shape=[8, 4])
output1 = dist.shard_tensor(input1, mesh, [dist.Shard(0)])

input2 = paddle.randn([4, 8])
output2 = dist.shard_tensor(input2, mesh, [dist.Shard(1)])

self.assertTrue(input1.is_dense_tensor_type())
self.assertTrue(input2.is_dense_tensor_type())

self.assertTrue(main_program.num_ops() == 6)

self.assertFalse(input1.use_empty())
self.assertFalse(input2.use_empty())

self.assertTrue(output1.use_empty())
self.assertTrue(output2.use_empty())

self.assertFalse(input1.get_defining_op().has_attr("op_dist_attr"))
self.assertFalse(input2.get_defining_op().has_attr("op_dist_attr"))

# check dist type
self.assertTrue(output1.is_dist_dense_tensor_type())
self.assertTrue(output2.is_dist_dense_tensor_type())

# run apply_mix2dist_pass and apply_dist2dense_pass
apply_mix2dist_pass(main_program)
apply_dist2dense_pass(main_program)

# after apply_mix2dist_pass, the program changed
# and after apply_dist2dense_pass, the operator in program do not have dist_attr
self.assertTrue(main_program.num_ops() == 4)

self.assertTrue(input1.is_dense_tensor_type())
self.assertTrue(input2.is_dense_tensor_type())

self.assertFalse(input1.get_defining_op().has_attr("op_dist_attr"))
self.assertFalse(input2.get_defining_op().has_attr("op_dist_attr"))

# check shape attribute of full_int_array op
input1_shape = input1.get_defining_op().operand_source(0)
input1_shape_op = input1_shape.get_defining_op()
self.assertFalse(input1_shape_op.has_attr("op_dist_attr"))
input1_shape_op_attr = input1_shape_op.attrs()
self.assertEqual(input1_shape_op_attr['value'], [4, 4])

input2_shape = input2.get_defining_op().operand_source(0)
input2_shape_op = input2_shape.get_defining_op()
self.assertFalse(input2_shape_op.has_attr("op_dist_attr"))
input2_shape_op_attr = input2_shape_op.attrs()
self.assertEqual(input2_shape_op_attr['value'], [4, 4])

# check shape of input1 and input2
self.assertEqual(input1.shape, [4, 4])
self.assertEqual(input2.shape, [4, 4])


if __name__ == "__main__":
unittest.main()