Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CodeStyle][UP031] fix some python/paddle/ - part 8 #65552

Merged
merged 4 commits into from
Jun 28, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions python/paddle/distributed/auto_parallel/static/converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ def _check_tensor_dict(self, tensors_dict):
)
if not isinstance(tensors_dict, dict):
raise TypeError(
f"The type of 'tensors_dict' should be 'dict', but got '{str(type(tensors_dict))}'."
f"The type of 'tensors_dict' should be 'dict', but got '{type(tensors_dict)}'."
)
return tensors_dict

Expand All @@ -67,7 +67,7 @@ def _check_pre_strategy(self, pre_strategy):
if not isinstance(pre_strategy, dict):
raise TypeError(
"The type of 'pre_strategy' should be 'dict', "
f"but got '{str(type(pre_strategy))}'."
f"but got '{type(pre_strategy)}'."
)
return pre_strategy

Expand All @@ -80,7 +80,7 @@ def _check_cur_strategy(self, cur_strategy):
if not isinstance(cur_strategy, dict):
raise TypeError(
"The type of 'cur_strategy' should be 'dict', "
f"but got '{str(type(cur_strategy))}'."
f"but got '{type(cur_strategy)}'."
)
return cur_strategy

Expand Down Expand Up @@ -150,7 +150,7 @@ def convert(self, strict=True):
)
except ValueError as err:
raise ValueError(
f"Fail to convert tensor '{str(tensor_name)}'. " + str(err)
f"Fail to convert tensor '{tensor_name}'. " + str(err)
)

for tensor_name in self._pre_strategy:
Expand All @@ -176,15 +176,15 @@ def convert(self, strict=True):
tensor_not_in_cur = set(tensor_not_in_cur) - set(tensor_match_with_cur)
if tensor_not_in_pre:
warnings.warn(
f"tensors [{str(tensor_not_in_pre)}] are not found in last training strategy."
f"tensors [{tensor_not_in_pre}] are not found in last training strategy."
)
if tensor_not_in_cur:
warnings.warn(
f"tensors [{str(tensor_not_in_cur)}] are not found in current training strategy."
f"tensors [{tensor_not_in_cur}] are not found in current training strategy."
)
if tensor_not_in_ckpt:
warnings.warn(
f"tensors [{str(tensor_not_in_ckpt)}] are found in pre_strategy, but are not found"
f"tensors [{tensor_not_in_ckpt}] are found in pre_strategy, but are not found"
"in checkpoint files, please check your checkpoint files."
)

Expand Down Expand Up @@ -215,7 +215,7 @@ def convert_with_prefix_match(
)
except ValueError as err:
raise ValueError(
f"Fail to convert tensor '{str(cur_name)}' by '{str(pre_name)}'. "
f"Fail to convert tensor '{cur_name}' by '{pre_name}'. "
+ str(err)
)
self._logger.info(
Expand Down Expand Up @@ -302,7 +302,7 @@ def merge_with_dist_attr(tensor_list, dist_attr):

if len(partition_tensor_list) != 1:
raise ValueError(
f"Fail to merge tensor with dist_attr '{str(dist_attr)}'."
f"Fail to merge tensor with dist_attr '{dist_attr}'."
)
complete_tensor = partition_tensor_list[0][0]
return complete_tensor
Expand All @@ -327,7 +327,7 @@ def slice_with_dist_attr(tensor, dist_attr):
)
if sliced_tensor_index not in range(len(sliced_tensor_list)):
raise ValueError(
f"Fail to slice tensor with dist_attr '{str(dist_attr)}'."
f"Fail to slice tensor with dist_attr '{dist_attr}'."
)
sliced_tensor = sliced_tensor_list[sliced_tensor_index]
return sliced_tensor
Expand Down
4 changes: 2 additions & 2 deletions python/paddle/nn/clip.py
Original file line number Diff line number Diff line change
Expand Up @@ -532,7 +532,7 @@ def __init__(self, clip_norm):
self.clip_norm = float(clip_norm)

def __str__(self):
return "Gradient Clip By Norm, clip_norm=%f" % self.clip_norm
return f"Gradient Clip By Norm, clip_norm={self.clip_norm:f}"

def _clip_gradients(self, params_grads):
params_and_grads = []
Expand Down Expand Up @@ -676,7 +676,7 @@ def __init__(
self._async_add_n = None

def __str__(self):
return "Gradient Clip By GlobalNorm, global_norm=%f" % (self.clip_norm)
return f"Gradient Clip By GlobalNorm, global_norm={self.clip_norm:f}"

@imperative_base.no_grad()
def _dygraph_clip(self, params_grads):
Expand Down
2 changes: 1 addition & 1 deletion python/paddle/nn/functional/activation.py
Original file line number Diff line number Diff line change
Expand Up @@ -929,7 +929,7 @@ def maxout(
if axis not in [1, -1, 3]:
raise ValueError(
"Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
"Attr(axis): %s." % str(axis)
f"Attr(axis): {axis}."
)
if axis == -1:
axis = 3
Expand Down
4 changes: 2 additions & 2 deletions python/paddle/nn/functional/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -1462,7 +1462,7 @@ def dropout2d(
if data_format not in ["NCHW", "NHWC"]:
raise ValueError(
"Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
"Attr(data_format): %s." % str(data_format)
f"Attr(data_format): {data_format}."
)

return dropout(
Expand Down Expand Up @@ -1524,7 +1524,7 @@ def dropout3d(
if data_format not in ["NCDHW", "NDHWC"]:
raise ValueError(
"Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
"Attr(data_format): %s." % str(data_format)
f"Attr(data_format): {data_format}."
)

return dropout(
Expand Down
24 changes: 12 additions & 12 deletions python/paddle/nn/functional/pooling.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,23 +93,23 @@ def _channel_last(data_format, num_dims):
if data_format not in ['NCL', 'NLC']:
raise ValueError(
"Attr(data_format) should be 'NCL' or 'NLC'. Received "
"Attr(data_format): %s" % str(data_format)
f"Attr(data_format): {data_format}"
)
else:
return True if data_format == "NLC" else False
if num_dims == 2:
if data_format not in ['NCHW', 'NHWC']:
raise ValueError(
"Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
"Attr(data_format): %s" % str(data_format)
f"Attr(data_format): {data_format}"
)
else:
return True if data_format == "NHWC" else False
if num_dims == 3:
if data_format not in ['NCDHW', 'NDHWC']:
raise ValueError(
"Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
"Attr(data_format): %s" % str(data_format)
f"Attr(data_format): {data_format}"
)
else:
return True if data_format == "NDHWC" else False
Expand Down Expand Up @@ -693,9 +693,9 @@ def max_pool1d(


def _unpool_output_size(x, kernel_size, stride, padding, output_size):
assert output_size is None or isinstance(output_size, (list, tuple)), (
"Required output_size is None|list|tuple, but received %s" % output_size
)
assert output_size is None or isinstance(
output_size, (list, tuple)
), f"Required output_size is None|list|tuple, but received {output_size}"
input_size = x.shape
default_size = []
for d in range(len(kernel_size)):
Expand Down Expand Up @@ -809,7 +809,7 @@ def max_unpool1d(
if data_format not in ["NCL"]:
raise ValueError(
"Attr(data_format) should be 'NCL'. Received "
"Attr(data_format): %s." % str(data_format)
f"Attr(data_format): {data_format}."
)
data_format = "NCHW"
x = unsqueeze(x, [2])
Expand Down Expand Up @@ -954,7 +954,7 @@ def max_unpool2d(
if data_format not in ["NCHW"]:
raise ValueError(
"Attr(data_format) should be 'NCHW'. Received "
"Attr(data_format): %s." % str(data_format)
f"Attr(data_format): {data_format}."
)

output_size = _unpool_output_size(
Expand Down Expand Up @@ -1083,7 +1083,7 @@ def max_unpool3d(
if data_format not in ["NCDHW"]:
raise ValueError(
"Attr(data_format) should be 'NCDHW'. Received "
"Attr(data_format): %s." % str(data_format)
f"Attr(data_format): {data_format}."
)

output_size = _unpool_output_size(
Expand Down Expand Up @@ -1188,7 +1188,7 @@ def max_pool2d(
if data_format not in ["NCHW", "NHWC"]:
raise ValueError(
"Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
"Attr(data_format): %s." % str(data_format)
f"Attr(data_format): {data_format}."
)

channel_last = True if data_format == "NHWC" else False
Expand Down Expand Up @@ -1567,7 +1567,7 @@ def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
if data_format not in ["NCHW", "NHWC"]:
raise ValueError(
"Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
"Attr(data_format): %s." % str(data_format)
f"Attr(data_format): {data_format}."
)

if data_format == "NCHW":
Expand Down Expand Up @@ -1702,7 +1702,7 @@ def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
if data_format not in ["NCDHW", "NDHWC"]:
raise ValueError(
"Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
"Attr(data_format): %s." % str(data_format)
f"Attr(data_format): {data_format}."
)

if data_format == "NCDHW":
Expand Down
3 changes: 1 addition & 2 deletions python/paddle/optimizer/adamw.py
Original file line number Diff line number Diff line change
Expand Up @@ -235,8 +235,7 @@ def __init__(

if not isinstance(learning_rate, (float, LRScheduler)):
raise TypeError(
"learning rate should be float or LRScheduler, got %s here"
% type(learning_rate)
f"learning rate should be float or LRScheduler, got {type(learning_rate)} here"
)
if grad_clip is not None:
if not isinstance(grad_clip, GradientClipBase):
Expand Down
21 changes: 7 additions & 14 deletions python/paddle/optimizer/lr.py
Original file line number Diff line number Diff line change
Expand Up @@ -1192,8 +1192,7 @@ def __init__(
):
if not isinstance(milestones, (tuple, list)):
raise TypeError(
"The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
% type(milestones)
f"The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received {type(milestones)}."
)

if not all(
Expand Down Expand Up @@ -1314,8 +1313,7 @@ def __init__(
) -> None:
if not isinstance(step_size, int):
raise TypeError(
"The type of 'step_size' must be 'int', but received %s."
% type(step_size)
f"The type of 'step_size' must be 'int', but received {type(step_size)}."
)
if gamma >= 1.0:
raise ValueError('gamma should be < 1.0.')
Expand Down Expand Up @@ -1425,8 +1423,7 @@ def __init__(
):
if not callable(lr_lambda):
raise TypeError(
"The type of 'lr_lambda' in 'LambdaDecay' must be 'function', but received %s."
% type(lr_lambda)
f"The type of 'lr_lambda' in 'LambdaDecay' must be 'function', but received {type(lr_lambda)}."
)

self.lr_lambda = lr_lambda
Expand Down Expand Up @@ -1571,8 +1568,7 @@ def __init__(
self.threshold_mode = threshold_mode
if not isinstance(learning_rate, (float, int)):
raise TypeError(
"The type of 'learning_rate' in 'ReduceOnPlateau' must be 'float', but received %s."
% type(learning_rate)
f"The type of 'learning_rate' in 'ReduceOnPlateau' must be 'float', but received {type(learning_rate)}."
)

self.patience = patience
Expand Down Expand Up @@ -1779,13 +1775,11 @@ def __init__(
) -> None:
if not isinstance(T_max, int):
raise TypeError(
"The type of 'T_max' in 'CosineAnnealingDecay' must be 'int', but received %s."
% type(T_max)
f"The type of 'T_max' in 'CosineAnnealingDecay' must be 'int', but received {type(T_max)}."
)
if not isinstance(eta_min, (float, int)):
raise TypeError(
"The type of 'eta_min' in 'CosineAnnealingDecay' must be 'float, int', but received %s."
% type(eta_min)
f"The type of 'eta_min' in 'CosineAnnealingDecay' must be 'float, int', but received {type(eta_min)}."
)
assert T_max > 0 and isinstance(
T_max, int
Expand Down Expand Up @@ -1876,8 +1870,7 @@ def __init__(
) -> None:
if not callable(lr_lambda):
raise TypeError(
"The type of 'lr_lambda' in 'MultiplicativeDecay' must be 'function', but received %s."
% type(lr_lambda)
f"The type of 'lr_lambda' in 'MultiplicativeDecay' must be 'function', but received {type(lr_lambda)}."
)

self.lr_lambda = lr_lambda
Expand Down
15 changes: 5 additions & 10 deletions python/paddle/optimizer/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -245,15 +245,13 @@ def __init__(
):
logging.info(
"If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
"The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
% weight_decay.__str__()
f"The weight_decay[{weight_decay}] in Optimizer will not take effect, and it will only be applied to other Parameters!"
)
break

if not isinstance(learning_rate, (float, LRScheduler)):
raise TypeError(
"learning rate should be float or LRScheduler, got %s here"
% type(learning_rate)
f"learning rate should be float or LRScheduler, got {type(learning_rate)} here"
)
if grad_clip is not None:
if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
Expand Down Expand Up @@ -611,8 +609,7 @@ def set_lr(self, value: float) -> None:
"""
if not isinstance(value, (int, float)):
raise TypeError(
"The type of 'value' in optimizer.set_lr must be float, but received %s."
% (type(value))
f"The type of 'value' in optimizer.set_lr must be float, but received {type(value)}."
)
if isinstance(self._learning_rate, LRScheduler):
raise RuntimeError(
Expand Down Expand Up @@ -684,8 +681,7 @@ def set_lr_scheduler(self, scheduler: LRScheduler) -> None:

if not isinstance(scheduler, LRScheduler):
raise TypeError(
"The type of 'scheduler' in optimizer.set_lr_schduler must be LRScheduler, but received %s."
% (type(scheduler))
f"The type of 'scheduler' in optimizer.set_lr_schduler must be LRScheduler, but received {type(scheduler)}."
)
self._learning_rate = scheduler

Expand Down Expand Up @@ -1694,8 +1690,7 @@ def append_regularization_ops(
repeate_regularizer = True
logging.info(
"If regularizer of a Parameter has been set by 'base.ParamAttr' or 'base.WeightNormParamAttr' already. "
"The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
% regularization.__str__()
f"The Regularization[{regularization}] in Optimizer will not take effect, and it will only be applied to other Parameters!"
)
with param.block.program._optimized_guard([param, grad]):
new_grad = self._create_regularization_of_grad(
Expand Down
18 changes: 10 additions & 8 deletions python/paddle/profiler/timer.py
Original file line number Diff line number Diff line change
Expand Up @@ -261,10 +261,12 @@ def _print_summary(self, benchmark):
return
print('Perf Summary'.center(100, '='))
if summary['reader_ratio'] != 0:
print('Reader Ratio: ' + '%.3f' % (summary['reader_ratio']) + '%')
print(
'Time Unit: s, IPS Unit: %s' % (benchmark.current_event.speed_unit)
)
print(
'Reader Ratio: '
+ '{:.3f}'.format(summary['reader_ratio'])
+ '%'
)
print(f'Time Unit: s, IPS Unit: {benchmark.current_event.speed_unit}')
print(
'|',
''.center(15),
Expand All @@ -283,9 +285,9 @@ def _print_summary(self, benchmark):
self._print_stats('ips', summary['ips_summary'])

def _print_stats(self, item, message_dict):
avg_str = '%.5f' % (message_dict['avg'])
max_str = '%.5f' % (message_dict['max'])
min_str = '%.5f' % (message_dict['min'])
avg_str = '{:.5f}'.format(message_dict['avg'])
max_str = '{:.5f}'.format(message_dict['max'])
min_str = '{:.5f}'.format(message_dict['min'])
print(
'|',
item.center(15),
Expand Down Expand Up @@ -379,7 +381,7 @@ def step_info(self, unit):
reader_average = self.current_event.reader_average()
batch_average = self.current_event.batch_average()
if reader_average:
message += ' reader_cost: %.5f s' % (reader_average)
message += f' reader_cost: {reader_average:.5f} s'
if batch_average:
if self.current_event.speed_mode == 'steps/s':
self.current_event.speed_unit = 'steps/s'
Expand Down
Loading