Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions python/paddle/v2/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,8 @@
import paddle.trainer.config_parser as cp

__all__ = [
'default_startup_program',
'default_main_program',
'optimizer',
'layer',
'activation',
Expand Down
8 changes: 7 additions & 1 deletion python/paddle/v2/fluid/framework.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
import numpy as np
import copy

__all__ = ['Block', 'Variable', 'Program', 'Operator']
__all__ = ['Block', 'Variable', 'Program', 'Operator', 'default_startup_program', 'default_main_program']


def unique_name(prefix):
Expand Down Expand Up @@ -562,3 +562,9 @@ def __init__(self, block, shape, dtype, **kwargs):
# program is a global instance.
g_main_program = Program()
g_startup_program = Program()

def default_startup_program():
return g_startup_program

def default_main_program():
return g_main_program
34 changes: 11 additions & 23 deletions python/paddle/v2/fluid/tests/book/test_fit_a_line.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,45 +2,33 @@
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.core as core
import paddle.v2.fluid.optimizer as optimizer

from paddle.v2.fluid.framework import Program
import paddle.v2.fluid.framework as framework
from paddle.v2.fluid.io import save_persistables, load_persistables
from paddle.v2.fluid.executor import Executor

import numpy as np

startup_program = Program()
main_program = Program()
x = layers.data(
name='x',
shape=[13],
data_type='float32',
main_program=main_program,
startup_program=startup_program)
data_type='float32')

y_predict = layers.fc(input=x,
size=1,
act=None,
main_program=main_program,
startup_program=startup_program)
act=None)

y = layers.data(
name='y',
shape=[1],
data_type='float32',
main_program=main_program,
startup_program=startup_program)
data_type='float32')

cost = layers.square_error_cost(
input=y_predict,
label=y,
main_program=main_program,
startup_program=startup_program)
avg_cost = layers.mean(
x=cost, main_program=main_program, startup_program=startup_program)
label=y)
avg_cost = layers.mean(x=cost)

sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
opts = sgd_optimizer.minimize(avg_cost, startup_program)
opts = sgd_optimizer.minimize(avg_cost)

BATCH_SIZE = 20

Expand All @@ -52,12 +40,12 @@
place = core.CPUPlace()
exe = Executor(place)

exe.run(startup_program)
exe.run(framework.default_startup_program())

PASS_NUM = 100
for pass_id in range(PASS_NUM):
save_persistables(exe, "./fit_a_line.model/", main_program=main_program)
load_persistables(exe, "./fit_a_line.model/", main_program=main_program)
save_persistables(exe, "./fit_a_line.model/")
load_persistables(exe, "./fit_a_line.model/")
for data in train_reader():
x_data = np.array(map(lambda x: x[0], data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("float32")
Expand All @@ -69,7 +57,7 @@
tensor_y = core.LoDTensor()
tensor_y.set(y_data, place)
# print tensor_y.get_dims()
outs = exe.run(main_program,
outs = exe.run(framework.default_main_program(),
feed={'x': tensor_x,
'y': tensor_y},
fetch_list=[avg_cost])
Expand Down
113 changes: 34 additions & 79 deletions python/paddle/v2/fluid/tests/book/test_image_classification_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,34 +5,28 @@
import paddle.v2.fluid.nets as nets
import paddle.v2.fluid.optimizer as optimizer
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.framework import g_startup_program, g_main_program
import paddle.v2.fluid.framework as framework
from paddle.v2.fluid.initializer import XavierInitializer


def resnet_cifar10(input, depth=32, main_program=None, startup_program=None):
def resnet_cifar10(input, depth=32):
def conv_bn_layer(input,
ch_out,
filter_size,
stride,
padding,
act='relu',
main_program=None,
startup_program=None):
act='relu'):
tmp = layers.conv2d(
input=input,
filter_size=filter_size,
num_filters=ch_out,
stride=stride,
padding=padding,
act=None,
bias_attr=False,
main_program=main_program,
startup_program=startup_program)
bias_attr=False)
return layers.batch_norm(
input=tmp,
act=act,
main_program=main_program,
startup_program=startup_program)
act=act)

def shortcut(input, ch_in, ch_out, stride, program, init_program):
if ch_in != ch_out:
Expand All @@ -44,40 +38,30 @@ def shortcut(input, ch_in, ch_out, stride, program, init_program):
def basicblock(input,
ch_in,
ch_out,
stride,
main_program=main_program,
startup_program=startup_program):
stride):
tmp = conv_bn_layer(
input,
ch_out,
3,
stride,
1,
main_program=main_program,
startup_program=startup_program)
1)
tmp = conv_bn_layer(
tmp,
ch_out,
3,
1,
1,
act=None,
main_program=main_program,
startup_program=startup_program)
short = shortcut(input, ch_in, ch_out, stride, main_program,
startup_program)
act=None)
short = shortcut(input, ch_in, ch_out, stride)
return layers.elementwise_add(
x=tmp,
y=short,
act='relu',
main_program=main_program,
startup_program=startup_program)
act='relu')

def layer_warp(block_func, input, ch_in, ch_out, count, stride, program,
startup_program):
tmp = block_func(input, ch_in, ch_out, stride, program, startup_program)
def layer_warp(block_func, input, ch_in, ch_out, count, stride):
tmp = block_func(input, ch_in, ch_out, stride)
for i in range(1, count):
tmp = block_func(tmp, ch_out, ch_out, 1, program, startup_program)
tmp = block_func(tmp, ch_out, ch_out, 1)
return tmp

assert (depth - 2) % 6 == 0
Expand All @@ -87,53 +71,41 @@ def layer_warp(block_func, input, ch_in, ch_out, count, stride, program,
ch_out=16,
filter_size=3,
stride=1,
padding=1,
main_program=main_program,
startup_program=startup_program)
padding=1)
res1 = layer_warp(
basicblock,
conv1,
16,
16,
n,
1,
main_program=main_program,
startup_program=startup_program)
1)
res2 = layer_warp(
basicblock,
res1,
16,
32,
n,
2,
main_program=main_program,
startup_program=startup_program)
2)
res3 = layer_warp(
basicblock,
res2,
32,
64,
n,
2,
main_program=main_program,
startup_program=startup_program)
2)
pool = layers.pool2d(
input=res3,
pool_size=8,
pool_type='avg',
pool_stride=1,
main_program=main_program,
startup_program=startup_program)
pool_stride=1)
return pool


def vgg16_bn_drop(input, main_program=None, startup_program=None):
def vgg16_bn_drop(input):
def conv_block(input,
num_filter,
groups,
dropouts,
main_program=None,
startup_program=None):
dropouts):
return nets.img_conv_group(
input=input,
pool_size=2,
Expand All @@ -143,51 +115,34 @@ def conv_block(input,
conv_act='relu',
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type='max',
main_program=main_program,
startup_program=startup_program)
pool_type='max')

conv1 = conv_block(input, 64, 2, [0.3, 0], main_program, startup_program)
conv2 = conv_block(conv1, 128, 2, [0.4, 0], main_program, startup_program)
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0], main_program,
startup_program)
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0], main_program,
startup_program)
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0], main_program,
startup_program)
conv1 = conv_block(input, 64, 2, [0.3, 0])
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

drop = layers.dropout(
x=conv5,
dropout_prob=0.5,
main_program=main_program,
startup_program=startup_program)
dropout_prob=0.5)
fc1 = layers.fc(input=drop,
size=512,
act=None,
param_attr={"initializer": XavierInitializer()},
main_program=main_program,
startup_program=startup_program)
param_attr={"initializer": XavierInitializer()})
reshape1 = layers.reshape(
x=fc1,
shape=list(fc1.shape + (1, 1)),
main_program=main_program,
startup_program=startup_program)
shape=list(fc1.shape + (1, 1)))
bn = layers.batch_norm(
input=reshape1,
act='relu',
main_program=main_program,
startup_program=startup_program)
act='relu')
drop2 = layers.dropout(
x=bn,
dropout_prob=0.5,
main_program=main_program,
startup_program=startup_program)
dropout_prob=0.5)
fc2 = layers.fc(input=drop2,
size=512,
act=None,
param_attr={"initializer": XavierInitializer()},
main_program=main_program,
startup_program=startup_program)
param_attr={"initializer": XavierInitializer()})
return fc2


Expand Down Expand Up @@ -225,7 +180,7 @@ def conv_block(input,
place = core.CPUPlace()
exe = Executor(place)

exe.run(g_startup_program)
exe.run(framework.default_startup_program())

for pass_id in range(PASS_NUM):
batch_id = 0
Expand All @@ -243,7 +198,7 @@ def conv_block(input,
tensor_img.set(img_data, place)
tensor_y.set(y_data, place)

outs = exe.run(g_main_program,
outs = exe.run(framework.default_main_program(),
feed={"pixel": tensor_img,
"label": tensor_y},
fetch_list=[avg_cost, accuracy])
Expand Down
Loading