Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion paddle/phi/api/yaml/legacy_ops.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -1685,7 +1685,7 @@
kernel :
func : rmsprop {dense, dense, dense, dense, dense, dense -> dense, dense, dense, dense}
rmsprop_dense_param_sparse_grad {dense, dense, selected_rows, dense, dense, dense -> dense, dense, dense, dense}
optional : mean_grad
optional : mean_grad
inplace : (param -> param_out), (moment -> moment_out), (mean_square -> mean_square_out), (mean_grad -> mean_grad_out)

- op : rnn
Expand Down
69 changes: 44 additions & 25 deletions python/paddle/optimizer/rmsprop.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle import _C_ops

from ..fluid import framework
from ..fluid.framework import in_dygraph_mode
from .optimizer import Optimizer

__all__ = []
Expand Down Expand Up @@ -216,32 +219,48 @@ def _append_optimize_op(self, block, param_and_grad):
mean_grad_acc = self._get_accumulator(
self._mean_grad_acc_str, param_and_grad[0]
)
rmsprop_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"Moment": momentum_acc,
"MeanSquare": mean_square_acc,
"MeanGrad": mean_grad_acc,
"LearningRate": self._create_param_lr(param_and_grad),
},
outputs={
"ParamOut": param_and_grad[0],
"MomentOut": momentum_acc,
"MeanSquareOut": mean_square_acc,
"MeanGradOut": mean_grad_acc,
},
attrs={
"epsilon": self._epsilon,
"decay": self._rho,
"momentum": self._momentum,
"centered": self._centered,
},
stop_gradient=True,
)

return rmsprop_op
if in_dygraph_mode():
_C_ops.rmsprop_(
param_and_grad[0],
mean_square_acc,
param_and_grad[1],
momentum_acc,
self._create_param_lr(param_and_grad),
mean_grad_acc,
self._epsilon,
self._rho,
self._momentum,
self._centered,
)
return None
else:
rmsprop_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"Moment": momentum_acc,
"MeanSquare": mean_square_acc,
"MeanGrad": mean_grad_acc,
"LearningRate": self._create_param_lr(param_and_grad),
},
outputs={
"ParamOut": param_and_grad[0],
"MomentOut": momentum_acc,
"MeanSquareOut": mean_square_acc,
"MeanGradOut": mean_grad_acc,
},
attrs={
"epsilon": self._epsilon,
"decay": self._rho,
"momentum": self._momentum,
"centered": self._centered,
},
stop_gradient=True,
)

return rmsprop_op

def _update_param_group(self, parameters):
self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
Expand Down