Skip to content

Adding Adadelta optimization operator #4576

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Oct 5, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
115 changes: 115 additions & 0 deletions paddle/operators/adadelta_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/adadelta_op.h"

namespace paddle {
namespace operators {

class AdadeltaOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
void InferShape(framework::InferShapeContextBase *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Param"),
"Input(Param) of AdadeltaOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Grad"),
"Input(Grad) of AdadeltaOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("AvgSquaredGrad"),
"Input(AvgSquaredGrad) of AdadeltaOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("AvgSquaredUpdate"),
"Input(AvgSquaredUpdate) of AdadeltaOp should not be null.");

PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
"Output(ParamOut) of AdadeltaOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("AvgSquaredGradOut"),
"Output(AvgSquaredGradOut) of AdadeltaOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("AvgSquaredUpdateOut"),
"Output(AvgSquaredUpdateOut) of AdadeltaOp should not be null.");

auto param_dim = ctx->GetInputDim("Param");
PADDLE_ENFORCE_EQ(
param_dim, ctx->GetInputDim("Grad"),
"param and grad input of AdadeltaOp should have same dimension");
PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredGrad"),
"Param and AvgSquaredGrad input of AdadeltaOp "
"should have same dimension");
PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredUpdate"),
"Param and AvgSquaredUpdate input of AdadeltaOp "
"should have same dimension");

ctx->SetOutputDim("ParamOut", param_dim);
ctx->SetOutputDim("AvgSquaredGradOut", param_dim);
ctx->SetOutputDim("AvgSquaredUpdateOut", param_dim);
}
};

class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AdadeltaOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
AddInput("AvgSquaredGrad",
"(Tensor) Input expectation of squared gradient");
AddInput("AvgSquaredUpdate",
"(Tensor) Input expectation of squared parameter updates");

AddOutput("ParamOut", "(Tensor) Output parameter");
AddOutput("AvgSquaredGradOut",
"(Tensor) Output expectation of squared gradient");
AddOutput("AvgSquaredUpdateOut",
"(Tensor) Output expectation of squared parameter updates");

AddAttr<float>("rho",
"(float, default 0.95) Exponential decay rate "
"for squared gradients.")
.SetDefault(0.95f);
AddAttr<float>("epsilon",
"(float, default 1.0e-6) Constant for "
"numerical stability")
.SetDefault(1.0e-6f);
AddComment(R"DOC(
Adadelta Updates Operator.

This implements the Adadelta optimizer[1]. Adadelta is a per-dimension
adaptive learning rate method for gradient descent.

Adadelta updates:

avg_squared_grad_out = rho * avg_squared_grad + (1 - rho) * grad * grad
param_update = - sqrt((avg_squared_update + epsilon) /
(avg_squared_grad_out + epsilon)) * grad
avg_squared_update_out = rho * avg_squared_update + (1 - rho) * param_update**2
param_out = param + param_update

References:
[1] ADADELTA: An Adaptive Learning Rate Method
https://arxiv.org/abs/1212.5701

)DOC");
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adadelta, ops::AdadeltaOp, ops::AdadeltaOpMaker);
REGISTER_OP_CPU_KERNEL(
adadelta, ops::AdadeltaOpKernel<paddle::platform::CPUPlace, float>);
20 changes: 20 additions & 0 deletions paddle/operators/adadelta_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#define EIGEN_USE_GPU
#include "paddle/operators/adadelta_op.h"

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
adadelta, ops::AdadeltaOpKernel<paddle::platform::GPUPlace, float>);
69 changes: 69 additions & 0 deletions paddle/operators/adadelta_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

template <typename Place, typename T>
class AdadeltaOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
auto avg_squared_grad_out_tensor =
ctx.Output<framework::Tensor>("AvgSquaredGradOut");
auto avg_squared_update_out_tensor =
ctx.Output<framework::Tensor>("AvgSquaredUpdateOut");

param_out_tensor->mutable_data<T>(ctx.GetPlace());
avg_squared_grad_out_tensor->mutable_data<T>(ctx.GetPlace());
avg_squared_update_out_tensor->mutable_data<T>(ctx.GetPlace());

float rho = ctx.Attr<float>("rho");
float epsilon = ctx.Attr<float>("epsilon");

auto param = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Param"));
auto grad = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Grad"));
// Squared gradient accumulator
auto avg_squared_grad = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("AvgSquaredGrad"));
// Squared updates accumulator
auto avg_squared_update = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("AvgSquaredUpdate"));
auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
auto avg_squared_grad_out =
framework::EigenVector<T>::Flatten(*avg_squared_grad_out_tensor);
auto avg_squared_update_out =
framework::EigenVector<T>::Flatten(*avg_squared_update_out_tensor);
auto place = ctx.GetEigenDevice<Place>();

avg_squared_grad_out.device(place) =
rho * avg_squared_grad + (1 - rho) * grad.square();
auto update =
-((avg_squared_update + epsilon) / (avg_squared_grad_out + epsilon))
.sqrt() *
grad;
avg_squared_update_out.device(place) =
rho * avg_squared_update + (1 - rho) * update.square();
param_out.device(place) = param + update;
}
};

} // namespace operators
} // namespace paddle
96 changes: 96 additions & 0 deletions python/paddle/v2/framework/tests/test_adadelta_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
import unittest
import numpy as np
from op_test import OpTest


class TestAdadeltaOp1(OpTest):
def setUp(self):
self.op_type = "adadelta"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The squared gradient is positive
avg_squared_grad = np.random.random((102, 105)).astype("float32")
# The squared update is positive
avg_squared_update = np.random.random((102, 105)).astype("float32")

rho = 0.95
epsilon = 1e-6

self.inputs = {
'Param': param,
'Grad': grad,
'AvgSquaredGrad': avg_squared_grad,
'AvgSquaredUpdate': avg_squared_update
}

self.attrs = {'rho': rho, 'epsilon': epsilon}

avg_squared_grad_out = rho * avg_squared_grad + \
(1 - rho) * np.square(grad)
update = -np.multiply(
np.sqrt(
np.divide(avg_squared_update + epsilon, avg_squared_grad_out +
epsilon)), grad)

avg_squared_update_out = rho * avg_squared_update + \
(1 - rho) * np.square(update)

param_out = param + update

self.outputs = {
'ParamOut': param_out,
'AvgSquaredGradOut': avg_squared_grad_out,
'AvgSquaredUpdateOut': avg_squared_update_out
}

def test_check_output(self):
self.check_output()


class TestAdadeltaOp2(OpTest):
'''Test Adadelta op with default attribute values
'''

def setUp(self):
self.op_type = "adadelta"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The squared gradient is positive
avg_squared_grad = np.random.random((102, 105)).astype("float32")
# The squared update is positive
avg_squared_update = np.random.random((102, 105)).astype("float32")

rho = 0.95
epsilon = 1e-6

self.inputs = {
'Param': param,
'Grad': grad,
'AvgSquaredGrad': avg_squared_grad,
'AvgSquaredUpdate': avg_squared_update
}

avg_squared_grad_out = rho * avg_squared_grad + \
(1 - rho) * np.square(grad)
update = -np.multiply(
np.sqrt(
np.divide(avg_squared_update + epsilon, avg_squared_grad_out +
epsilon)), grad)

avg_squared_update_out = rho * avg_squared_update + \
(1 - rho) * np.square(update)

param_out = param + update

self.outputs = {
'ParamOut': param_out,
'AvgSquaredGradOut': avg_squared_grad_out,
'AvgSquaredUpdateOut': avg_squared_update_out
}

def test_check_output(self):
self.check_output()


if __name__ == "__main__":
unittest.main()