Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[XPU] transfer concat kernel #45463

Merged
merged 5 commits into from
Aug 31, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
235 changes: 0 additions & 235 deletions paddle/fluid/operators/concat_op_xpu.cc

This file was deleted.

105 changes: 105 additions & 0 deletions paddle/phi/kernels/xpu/concat_grad_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/concat_grad_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
#include "paddle/phi/kernels/funcs/concat_funcs.h"

namespace phi {

template <typename T, typename Context>
void ConcatGradKernel(const Context& dev_ctx,
const std::vector<const DenseTensor*>& x,
const DenseTensor& out_grad,
const Scalar& axis_scalar,
std::vector<DenseTensor*> x_grad) {
using XPUType = typename XPUTypeTrait<T>::Type;
auto outs = x_grad;
{
auto dx = outs;
for (size_t i = 0; i < dx.size(); ++i) {
if (dx[i] != nullptr) {
dx[i]->set_lod(x[i]->lod());
}
}
}
PADDLE_ENFORCE_NE(
x[0],
nullptr,
phi::errors::InvalidArgument("The input should not be null."));
auto axis = axis_scalar.to<int>();
axis = phi::funcs::ComputeAxis(static_cast<int64_t>(axis),
static_cast<int64_t>(x[0]->dims().size()));
// get output tensor that the name is not kEmptyVarName
std::vector<XPUType*> ptrs(outs.size());
for (size_t j = 0; j < outs.size(); ++j) {
if (outs[j] && outs[j]->numel() != 0UL) {
dev_ctx.template Alloc<T>(outs[j]);
ptrs[j] = reinterpret_cast<XPUType*>(outs[j]->data<T>());
} else {
ptrs[j] = nullptr;
}
}
PADDLE_ENFORCE_GE(
axis,
0,
phi::errors::InvalidArgument("concat_grad: axis should be larger than or "
"equal to 0, but received axis is %d.",
axis));
PADDLE_ENFORCE_LT(axis,
out_grad.dims().size(),
phi::errors::InvalidArgument(
"concat_grad: axis should be less than x[0]->dims()!"
"But received axis is %d, while x[0]->dims()"
"size is %d.",
axis,
out_grad.dims().size()));

auto input_dims = x[0]->dims();
std::vector<int> split_list(x.size());
std::vector<int> xdims_list(input_dims.size());
int total_length = 0;
for (size_t i = 0; i < x.size(); ++i) {
split_list[i] = x[i]->dims()[axis];
total_length += x[i]->dims()[axis];
}
for (int i = 0; i < input_dims.size(); ++i) {
if (i == axis) {
continue;
}
xdims_list[i] = input_dims[i];
}
xdims_list[axis] = total_length;

int r =
xpu::split<XPUType>(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(out_grad.data<T>()),
ptrs,
xdims_list,
split_list,
axis);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "concat_grad");
}

} // namespace phi

PD_REGISTER_KERNEL(concat_grad,
XPU,
ALL_LAYOUT,
phi::ConcatGradKernel,
float,
phi::dtype::float16) {}
Loading