Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
104 changes: 11 additions & 93 deletions paddle/fluid/operators/dirichlet_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -11,83 +11,14 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/dirichlet_op.h"

#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"

namespace paddle {
namespace operators {
template <typename T, typename UniformSamplerT, typename NormalSamplerT>
struct GammaCPUFunctor {
GammaCPUFunctor(const T* alpha,
T* gamma,
BaseSampler<T, UniformSamplerT> uniform,
BaseSampler<T, NormalSamplerT> normal)
: alpha_(alpha), gamma_(gamma), uniform_(uniform), normal_(normal) {}

HOST void operator()(int64_t index) {
auto sample = sample_gamma<T, T, UniformSamplerT, NormalSamplerT>(
alpha_[index], uniform_, normal_);
gamma_[index] = std::max(std::numeric_limits<T>::min(), sample);
}

const T* alpha_;
T* gamma_;
BaseSampler<T, UniformSamplerT> uniform_;
BaseSampler<T, NormalSamplerT> normal_;
};

template <typename T>
struct DirichletSampler<phi::CPUContext, T> {
void operator()(const framework::ExecutionContext& ctx,
const Tensor* alpha,
Tensor* out) {
auto& dev_ctx = ctx.device_context<phi::CPUContext>();

auto p_gen = framework::DefaultCPUGenerator();
auto generator = p_gen->GetCPUEngine();

auto uniform = [&generator]() -> T {
std::uniform_real_distribution<T> u(0.0, 1.0);
return u(*generator);
};
BaseSampler<T, decltype(uniform)> standard_uniform(uniform);

auto normal = [&generator]() {
std::normal_distribution<T> n(0.0, 1.0);
return n(*generator);
};
BaseSampler<T, decltype(normal)> standard_normal(normal);

// sample from K gamma distributions, where K=alpha.numel()
framework::Tensor gamma_samples;
gamma_samples.mutable_data<T>(alpha->dims(), dev_ctx.GetPlace());
GammaCPUFunctor<T, decltype(uniform), decltype(normal)> gamma_functor(
alpha->data<T>(),
gamma_samples.data<T>(),
standard_uniform,
standard_normal);
platform::ForRange<phi::CPUContext> for_range(dev_ctx, alpha->numel());
for_range(gamma_functor);

// normalize them into a simplex, along the last axis
framework::Tensor gamma_sum;
auto new_shape = gamma_samples.dims();
new_shape[new_shape.size() - 1] = 1;
gamma_sum.mutable_data<T>(new_shape, dev_ctx.GetPlace());

ReduceKernelFunctor<phi::CPUContext, T, SumFunctor>(
&gamma_samples, &gamma_sum, {new_shape.size() - 1}, true, false, ctx)
.template apply<T>();
ElementwiseComputeEx<DivFunctor<T>, phi::CPUContext, T, T>(
ctx, &gamma_samples, &gamma_sum, -1, DivFunctor<T>(), out);
}
};

class DirichletOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
Expand All @@ -100,29 +31,16 @@ class DirichletOpMaker : public framework::OpProtoAndCheckerMaker {
class DirichletOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Alpha"), "Input", "Alpha", "dirichlet");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "dirichlet");
const auto alpha_dim = ctx->GetInputDim("Alpha");
PADDLE_ENFORCE_GE(alpha_dim.size(),
1,
platform::errors::InvalidArgument(
"ShapeError: The number of dimensions of 'Alpha' "
"must be greater than or euqal to 1. "
"But received Alpha's dimensions = %d,",
alpha_dim.size()));
ctx->ShareDim("Alpha", /*->*/ "Out");
}
};

} // namespace operators
} // namespace paddle

DECLARE_INFER_SHAPE_FUNCTOR(dirichlet,
DirichletInferShapeFunctor,
PD_INFER_META(phi::DirichletInferMeta));

REGISTER_OP_WITHOUT_GRADIENT(dirichlet,
paddle::operators::DirichletOp,
paddle::operators::DirichletOpMaker);
REGISTER_OP_CPU_KERNEL(
dirichlet,
paddle::operators::DirichletKernel<phi::CPUContext, float>,
paddle::operators::DirichletKernel<phi::CPUContext, double>);
paddle::operators::DirichletOpMaker,
DirichletInferShapeFunctor);
9 changes: 9 additions & 0 deletions paddle/phi/api/yaml/legacy_api.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -2531,6 +2531,15 @@
kernel:
func: broadcast_tensors
backward: broadcast_tensors_grad

# dirichlet
- api: dirichlet
args: (Tensor alpha)
output: Tensor
infer_meta:
func: DirichletInferMeta
kernel:
func: dirichlet

# eig
- api: eig
Expand Down
13 changes: 13 additions & 0 deletions paddle/phi/infermeta/unary.cc
Original file line number Diff line number Diff line change
Expand Up @@ -518,6 +518,19 @@ void DiagonalInferMeta(const MetaTensor& input,
out->set_dims(phi::make_ddim(out_dims));
}

void DirichletInferMeta(const MetaTensor& alpha, MetaTensor* out) {
const auto alpha_dim = alpha.dims();
PADDLE_ENFORCE_GE(alpha_dim.size(),
1,
phi::errors::InvalidArgument(
"ShapeError: The number of dimensions of 'Alpha' "
"must be greater than or euqal to 1. "
"But received Alpha's dimensions = %d,",
alpha_dim.size()));
out->set_dims(alpha_dim);
out->set_dtype(alpha.dtype());
}

void EigInferMeta(const MetaTensor& x, MetaTensor* out_w, MetaTensor* out_v) {
auto x_dims = x.dims();
int rank = x_dims.size();
Expand Down
3 changes: 2 additions & 1 deletion paddle/phi/infermeta/unary.h
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,8 @@ void DiagInferMeta(const MetaTensor& x,
void DiagonalInferMeta(
const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out);

void DirichletInferMeta(const MetaTensor& alpha, MetaTensor* out);

void EigInferMeta(const MetaTensor& x, MetaTensor* out_w, MetaTensor* out_v);

void EighInferMeta(const MetaTensor& x,
Expand Down Expand Up @@ -527,5 +529,4 @@ void ChannelShuffleInferMeta(const MetaTensor& x,
MetaTensor* out);

void IdentityLossInferMeta(const MetaTensor& x, int reduction, MetaTensor* out);

} // namespace phi
102 changes: 102 additions & 0 deletions paddle/phi/kernels/cpu/dirichlet_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/elementwise.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/for_range.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/dirichlet_kernel_impl.h"

namespace phi {

template <typename T, typename UniformSamplerT, typename NormalSamplerT>
struct GammaCPUFunctor {
GammaCPUFunctor(const T* alpha,
T* gamma,
BaseSampler<T, UniformSamplerT> uniform,
BaseSampler<T, NormalSamplerT> normal)
: alpha_(alpha), gamma_(gamma), uniform_(uniform), normal_(normal) {}

HOST void operator()(int64_t index) {
auto sample = sample_gamma<T, T, UniformSamplerT, NormalSamplerT>(
alpha_[index], uniform_, normal_);
gamma_[index] = std::max(std::numeric_limits<T>::min(), sample);
}

const T* alpha_;
T* gamma_;
BaseSampler<T, UniformSamplerT> uniform_;
BaseSampler<T, NormalSamplerT> normal_;
};

template <typename T>
struct DirichletSampler<CPUContext, T> {
void operator()(const CPUContext& dev_ctx,
const DenseTensor& alpha,
DenseTensor* out) {
auto generator = dev_ctx.GetGenerator()->GetCPUEngine();

auto uniform = [&generator]() -> T {
std::uniform_real_distribution<T> u(0.0, 1.0);
return u(*generator);
};
BaseSampler<T, decltype(uniform)> standard_uniform(uniform);

auto normal = [&generator]() {
std::normal_distribution<T> n(0.0, 1.0);
return n(*generator);
};
BaseSampler<T, decltype(normal)> standard_normal(normal);

// sample from K gamma distributions, where K=alpha.numel()
DenseTensor gamma_samples;
gamma_samples.Resize(alpha.dims());
dev_ctx.template Alloc<T>(&gamma_samples);

GammaCPUFunctor<T, decltype(uniform), decltype(normal)> gamma_functor(
alpha.data<T>(),
gamma_samples.data<T>(),
standard_uniform,
standard_normal);
funcs::ForRange<CPUContext> for_range(dev_ctx, alpha.numel());
for_range(gamma_functor);

// normalize them into a simplex, along the last axis
DenseTensor gamma_sum;
auto new_shape = gamma_samples.dims();
new_shape[new_shape.size() - 1] = 1;
gamma_sum.Resize(new_shape);
dev_ctx.template Alloc<T>(&gamma_sum);

ReduceKernelImpl<CPUContext, T, T, funcs::SumFunctor>(
dev_ctx,
gamma_samples,
&gamma_sum,
{new_shape.size() - 1},
true,
false);

funcs::ElementwiseCompute<funcs::DivideFunctor<T>, T, T>(
dev_ctx, gamma_samples, gamma_sum, -1, funcs::DivideFunctor<T>(), out);
}
};

} // namespace phi

PD_REGISTER_KERNEL(
dirichlet, CPU, ALL_LAYOUT, phi::Dirichletkernel, float, double) {}
25 changes: 25 additions & 0 deletions paddle/phi/kernels/dirichlet_kernel.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/core/dense_tensor.h"

namespace phi {

template <typename T, typename Context>
void Dirichletkernel(const Context& dev_ctx,
const DenseTensor& alpha,
DenseTensor* out);
} // namespace phi
Loading