-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Add multiplex operator #4064
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Add multiplex operator #4064
Changes from all commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
b3f44ad
add multiplex operator
4a71d95
merge conflicts
18dc201
merge multiplex_op with the latest upstream
9da5192
adapt multiplex_op to the dev of framework
85a5d38
Merge branch 'develop' of upstream into multiplex_op_dev
7620efd
combine gpu&cpu code in multiplex_op
fb52bc6
revert code layout in multiplex_op
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/multiplex_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
using LoDTensor = framework::LoDTensor; | ||
|
||
class MultiplexOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
protected: | ||
void InferShape(const framework::InferShapeContext &ctx) const override { | ||
PADDLE_ENFORCE(!ctx.MultiInputVar("X").empty(), | ||
"Input(X) should not be null"); | ||
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"), | ||
"Output(Out) shouldn't be null."); | ||
auto ins = ctx.MultiInput<Tensor>("X"); | ||
auto *out = ctx.Output<LoDTensor>("Out"); | ||
auto num_ins = ins.size(); | ||
PADDLE_ENFORCE(num_ins > 2, | ||
"multiplex operator should have more than 2 inputs."); | ||
PADDLE_ENFORCE_EQ(ins[0]->dims().size(), 1, | ||
"The first input must be a index vector."); | ||
auto in_dim = ins[1]->dims(); | ||
|
||
for (size_t i = 2; i < num_ins; i++) { | ||
auto dim = ins[i]->dims(); | ||
PADDLE_ENFORCE( | ||
in_dim == dim, | ||
"All the input tensors except the first one must have the same size"); | ||
} | ||
out->Resize(in_dim); | ||
} | ||
}; | ||
|
||
class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
MultiplexOpMaker(framework::OpProto *proto, | ||
framework::OpAttrChecker *op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("X", "The input tensors of multiplex operator.").AsDuplicable(); | ||
AddOutput("Out", "The output tensor of multiplex operator."); | ||
AddComment(R"DOC(Multiplex operator | ||
|
||
Multiplex multiple tensors according to the index provided by the first | ||
input tensor. | ||
|
||
ins[0]: the index tensor. | ||
ins[1:N]: the candidate output tensors. | ||
For each index i from 0 to batchSize - 1, the output is the i-th row of the | ||
the (index[i] + 1)-th tensor. | ||
|
||
For i-th row of the output tensor: | ||
|
||
y[i][j] = x_{k}[i][j], j = 0,1, ... , (x_{1}.width - 1) | ||
|
||
where y is the output tensor. `x_{k}` is the k-th input tensor | ||
and `k = x{0}[i] + 1`. | ||
|
||
)DOC"); | ||
} | ||
}; | ||
|
||
class MultiplexGradOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
protected: | ||
void InferShape(const framework::InferShapeContext &ctx) const override { | ||
PADDLE_ENFORCE(!ctx.MultiInputVar("X").empty(), | ||
"Input(X) should not be null"); | ||
PADDLE_ENFORCE(!ctx.MultiOutputVar(framework::GradVarName("X")).empty(), | ||
"Output(X@Grad) should not be null"); | ||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), | ||
"Input(Out@GRAD) shouldn't be null."); | ||
auto d_ins = ctx.MultiOutput<LoDTensor>(framework::GradVarName("X")); | ||
auto ins = ctx.MultiInput<Tensor>("X"); | ||
// don't compute gradient for index (ins[0]) | ||
for (size_t i = 1; i < ins.size(); i++) { | ||
if (d_ins[i]) { | ||
d_ins[i]->Resize(ins[i]->dims()); | ||
} | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
namespace ops = paddle::operators; | ||
|
||
REGISTER_OP(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker, multiplex_grad, | ||
ops::MultiplexGradOp); | ||
REGISTER_OP_CPU_KERNEL( | ||
multiplex, ops::MultiplexCPUKernel<paddle::platform::CPUPlace, float>); | ||
REGISTER_OP_CPU_KERNEL( | ||
multiplex_grad, | ||
ops::MultiplexGradCPUKernel<paddle::platform::CPUPlace, float>); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/framework/op_registry.h" | ||
#include "paddle/operators/multiplex_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
template <typename Place, typename T> | ||
class MultiplexGPUKernel : public framework::OpKernel { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const { | ||
auto ins = ctx.MultiInput<framework::Tensor>("X"); | ||
auto* out = ctx.Output<framework::LoDTensor>("Out"); | ||
|
||
out->mutable_data<T>(ctx.GetPlace()); | ||
|
||
auto rows = ins[1]->dims()[0]; | ||
auto cols = ins[1]->dims()[1]; | ||
// copy index to cpu | ||
framework::Tensor index_t_cpu; | ||
index_t_cpu.CopyFrom<T>(*(ins[0]), platform::CPUPlace()); | ||
auto* index = index_t_cpu.data<T>(); | ||
auto stream = reinterpret_cast<const platform::CUDADeviceContext&>( | ||
ctx.device_context()) | ||
.stream(); | ||
Place place = boost::get<Place>(ctx.GetPlace()); | ||
for (auto i = 0; i < rows; i++) { | ||
int k = (int)index[i] + 1; | ||
PADDLE_ENFORCE_LT(k, ins.size(), | ||
"index exceeds the number of candidate tensors."); | ||
memory::Copy(place, out->data<T>() + i * cols, place, | ||
ins[k]->data<T>() + i * cols, cols * sizeof(T), stream); | ||
} | ||
} | ||
}; | ||
|
||
template <typename Place, typename T> | ||
class MultiplexGradGPUKernel : public framework::OpKernel { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const { | ||
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out")); | ||
auto ins = ctx.MultiInput<framework::Tensor>("X"); | ||
auto d_ins = | ||
ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X")); | ||
for (size_t i = 1; i < d_ins.size(); i++) { | ||
if (d_ins[i]) { | ||
d_ins[i]->mutable_data<T>(ctx.GetPlace()); | ||
auto t = framework::EigenVector<T>::Flatten(*d_ins[i]); | ||
t.device(ctx.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0)); | ||
} | ||
} | ||
|
||
auto rows = ins[1]->dims()[0]; | ||
auto cols = ins[1]->dims()[1]; | ||
// copy index to cpu | ||
framework::Tensor index_t_cpu; | ||
index_t_cpu.CopyFrom<T>(*(ins[0]), platform::CPUPlace()); | ||
auto* index = index_t_cpu.data<T>(); | ||
|
||
auto stream = reinterpret_cast<const platform::CUDADeviceContext&>( | ||
ctx.device_context()) | ||
.stream(); | ||
Place place = boost::get<Place>(ctx.GetPlace()); | ||
for (auto i = 0; i < rows; i++) { | ||
int k = (int)index[i] + 1; | ||
if (d_ins[k]) { | ||
memory::Copy(place, d_ins[k]->data<T>() + i * cols, place, | ||
d_out->data<T>() + i * cols, cols * sizeof(T), stream); | ||
} | ||
} | ||
} | ||
}; | ||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
|
||
REGISTER_OP_GPU_KERNEL( | ||
multiplex, ops::MultiplexGPUKernel<paddle::platform::GPUPlace, float>); | ||
REGISTER_OP_GPU_KERNEL( | ||
multiplex_grad, | ||
ops::MultiplexGradGPUKernel<paddle::platform::GPUPlace, float>); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
|
||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include "paddle/framework/eigen.h" | ||
#include "paddle/framework/op_registry.h" | ||
#include "paddle/memory/memcpy.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
template <typename Place, typename T> | ||
class MultiplexCPUKernel : public framework::OpKernel { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const { | ||
auto ins = ctx.MultiInput<framework::Tensor>("X"); | ||
auto* out = ctx.Output<framework::LoDTensor>("Out"); | ||
|
||
out->mutable_data<T>(ctx.GetPlace()); | ||
|
||
auto rows = ins[1]->dims()[0]; | ||
auto cols = ins[1]->dims()[1]; | ||
auto* index = ins[0]->data<T>(); | ||
Place place = boost::get<Place>(ctx.GetPlace()); | ||
for (auto i = 0; i < rows; i++) { | ||
int k = (int)index[i] + 1; | ||
PADDLE_ENFORCE_LT(k, ins.size(), | ||
"index exceeds the number of candidate tensors."); | ||
memory::Copy(place, out->data<T>() + i * cols, place, | ||
ins[k]->data<T>() + i * cols, cols * sizeof(T)); | ||
} | ||
} | ||
}; | ||
|
||
template <typename Place, typename T> | ||
class MultiplexGradCPUKernel : public framework::OpKernel { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const { | ||
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out")); | ||
auto ins = ctx.MultiInput<framework::Tensor>("X"); | ||
auto d_ins = | ||
ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X")); | ||
for (size_t i = 1; i < d_ins.size(); i++) { | ||
if (d_ins[i]) { | ||
d_ins[i]->mutable_data<T>(ctx.GetPlace()); | ||
auto t = framework::EigenVector<T>::Flatten(*d_ins[i]); | ||
t.device(ctx.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0)); | ||
} | ||
} | ||
|
||
auto rows = ins[1]->dims()[0]; | ||
auto cols = ins[1]->dims()[1]; | ||
auto* index = ins[0]->data<T>(); | ||
Place place = boost::get<Place>(ctx.GetPlace()); | ||
for (auto i = 0; i < rows; i++) { | ||
int k = (int)index[i] + 1; | ||
if (d_ins[k]) { | ||
memory::Copy(place, d_ins[k]->data<T>() + i * cols, place, | ||
d_out->data<T>() + i * cols, cols * sizeof(T)); | ||
} | ||
} | ||
} | ||
}; | ||
} | ||
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
import unittest | ||
import numpy as np | ||
from op_test import OpTest | ||
|
||
|
||
class TestMultiplexOp(OpTest): | ||
def setUp(self): | ||
self.op_type = "multiplex" | ||
rows = 3 | ||
index = np.array([3, 1, 0]) | ||
ins1 = np.random.random((rows, 10)).astype("float32") | ||
ins2 = np.random.random((rows, 10)).astype("float32") | ||
ins3 = np.random.random((rows, 10)).astype("float32") | ||
ins4 = np.random.random((rows, 10)).astype("float32") | ||
self.inputs = { | ||
'X': [('index', index), ('x1', ins1), ('x2', ins2), ('x3', ins3), | ||
('x4', ins4)] | ||
} | ||
# multiplex output | ||
output = np.zeros_like(ins1) | ||
for i in range(0, rows): | ||
k = index[i] + 1 | ||
output[i] = self.inputs['X'][k][1][i] | ||
self.outputs = {'Out': output} | ||
|
||
def test_check_output(self): | ||
self.check_output() | ||
|
||
def test_check_grad(self): | ||
self.check_grad(['x1', 'x2', 'x3', 'x4'], 'Out') | ||
|
||
def test_check_grad_ignore_x1(self): | ||
self.check_grad(['x2', 'x3', 'x4'], 'Out', no_grad_set=set('x1')) | ||
|
||
def test_check_grad_ignore_x1_x2(self): | ||
self.check_grad(['x3', 'x4'], 'Out', no_grad_set=set(['x1', 'x2'])) | ||
|
||
def test_check_grad_ignore_x3(self): | ||
self.check_grad(['x1', 'x2', 'x4'], 'Out', no_grad_set=set('x3')) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We also have to check the index in ins[0], index in ins[0] must less than ins[0]->dims()
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done. Add the index check in the forward compute function.