Skip to content

[Phi]Move elementwise_mul grad/double grad/triple grad Kernel to Phi #40252

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 9, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ USE_OP(matmul_grad);
USE_OP(square);
USE_OP(transpose2_grad);
USE_OP(concat_grad);
USE_OP(elementwise_mul_grad);
USE_OP_ITSELF(elementwise_mul_grad);
USE_OP(sigmoid_grad);
USE_OP(tanh_grad);
USE_OP(sum);
Expand Down
41 changes: 0 additions & 41 deletions paddle/fluid/operators/elementwise/elementwise_functor.h
Original file line number Diff line number Diff line change
Expand Up @@ -196,47 +196,6 @@ struct MinGradXYFunctor {
}
};

template <typename T>
struct MulGradFunctor {
inline HOSTDEVICE T operator()(const T a, const T b) const { return a * b; }
};
template <typename T>
struct MulGradFunctor<Complex<T>> {
inline HOSTDEVICE Complex<T> operator()(const Complex<T> a,
const Complex<T> b) const {
Complex<T> b_conj(b.real, -b.imag);
return a * b_conj;
}
};

template <typename InT, typename OutT>
struct MulGradXYFunctor {
inline HOSTDEVICE phi::Array<OutT, 2> operator()(const InT a, const InT b,
const InT c) {
phi::Array<OutT, 2> outs;
// dx = dout * y
outs[0] = a * b;
// dy = dout * x
outs[1] = a * c;
return outs;
}
};

template <typename InT, typename OutT>
struct MulGradXYFunctor<Complex<InT>, Complex<OutT>> {
inline HOSTDEVICE phi::Array<Complex<OutT>, 2> operator()(
const Complex<InT> a, const Complex<InT> b, const Complex<InT> c) {
phi::Array<Complex<OutT>, 2> outs;
// dx = dout * y
Complex<InT> b_conj(b.real, -b.imag);
outs[0] = a * b_conj;
// dy = dout * x
Complex<InT> c_conj(c.real, -c.imag);
outs[1] = a * c_conj;
return outs;
}
};

// Ternary compare
template <typename T>
struct MaxGradXFunctor {
Expand Down
49 changes: 0 additions & 49 deletions paddle/fluid/operators/elementwise/elementwise_mul_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -173,55 +173,6 @@ REGISTER_OP_CPU_KERNEL(
paddle::platform::complex<float>>,
ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<double>>);
REGISTER_OP_CPU_KERNEL(
elementwise_mul_grad,
ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, bool>,
ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::bfloat16>,
ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<float>>,
ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<double>>);
REGISTER_OP_CPU_KERNEL(
elementwise_mul_grad_grad,
ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
float>,
ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
double>,
ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
int>,
ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
int64_t>,
ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
bool>,
ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::bfloat16>,
ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<float>>,
ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<double>>);
REGISTER_OP_CPU_KERNEL(
elementwise_mul_triple_grad,
ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
float>,
ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
double>,
ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
int>,
ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
int64_t>,
ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
bool>,
ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::bfloat16>,
ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<float>>,
ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<double>>);

REGISTER_OP_VERSION(elementwise_mul)
.AddCheckpoint(
Expand Down
68 changes: 0 additions & 68 deletions paddle/fluid/operators/elementwise/elementwise_mul_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -63,33 +63,6 @@ class ElementwiseMulKernel<platform::CUDADeviceContext, T>
}
};

template <typename DeviceContext, typename T>
typename std::enable_if<
std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
ElementwiseMulGrad(const framework::ExecutionContext& ctx,
const framework::Tensor* x, const framework::Tensor* y,
const framework::Tensor* out, const framework::Tensor* dout,
framework::Tensor* dx, framework::Tensor* dy) {
int axis = ctx.Attr<int>("axis");
const auto& dev_ctx =
ctx.template device_context<platform::CUDADeviceContext>();
const auto place = ctx.GetPlace();

if (dx != nullptr && dy != nullptr) {
std::vector<const framework::Tensor*> ins = {dout, y, x};
GetGradXAndYOut<ElementwiseType::kTernary, T>(
dev_ctx, place, axis, ins, dout, dx, dy, MulGradXYFunctor<T, T>());
} else if (dx != nullptr && dy == nullptr) {
std::vector<const framework::Tensor*> ins = {dout, y};
GetGradXOrYOut<ElementwiseType::kBinary, T>(dev_ctx, place, axis, ins, dout,
dx, MulGradFunctor<T>());
} else if (dx == nullptr && dy != nullptr) {
std::vector<const framework::Tensor*> ins = {dout, x};
GetGradXOrYOut<ElementwiseType::kBinary, T>(dev_ctx, place, axis, ins, dout,
dy, MulGradFunctor<T>());
}
}

} // namespace operators
} // namespace paddle

Expand All @@ -103,44 +76,3 @@ REGISTER_OP_CUDA_KERNEL(
ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::bfloat16>,
ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<float>>,
ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<double>>);
REGISTER_OP_CUDA_KERNEL(
elementwise_mul_grad,
ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, float>,
ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, double>,
ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int>,
ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int64_t>,
ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, bool>,
ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::float16>,
ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::bfloat16>,
ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
plat::complex<float>>,
ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
plat::complex<double>>);
REGISTER_OP_CUDA_KERNEL(
elementwise_mul_grad_grad,
ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, float>,
ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, double>,
ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int>,
ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, bool>,
ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
plat::bfloat16>,
ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
plat::complex<float>>,
ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
plat::complex<double>>);
REGISTER_OP_CUDA_KERNEL(
elementwise_mul_triple_grad,
ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, float>,
ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, double>,
ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int>,
ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int64_t>,
ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, bool>,
ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, plat::float16>,
ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
plat::bfloat16>,
ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
plat::complex<float>>,
ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
plat::complex<double>>);
Loading