-
Notifications
You must be signed in to change notification settings - Fork 5.9k
Fix the bug of batch_norm and batch_norm_grad op. #38288
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -15,6 +15,8 @@ limitations under the License. */ | |
| #ifdef PADDLE_WITH_XPU | ||
|
|
||
| #include "paddle/fluid/operators/batch_norm_op.h" | ||
| #include <iterator> | ||
| #include <vector> | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
|
|
@@ -25,23 +27,25 @@ using DDim = framework::DDim; | |
| template <typename DeviceContext, typename T> | ||
| class BatchNormXPUKernel : public framework::OpKernel<T> { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const override { | ||
| void Compute(const framework::ExecutionContext &ctx) const override { | ||
| const auto epsilon = ctx.Attr<float>("epsilon"); | ||
| const auto momentum = ctx.Attr<float>("momentum"); | ||
| float momentum = ctx.Attr<float>("momentum"); | ||
| const auto is_test = ctx.Attr<bool>("is_test"); | ||
| const auto use_global_stats = ctx.Attr<bool>("use_global_stats"); | ||
| const auto trainable_stats = ctx.Attr<bool>("trainable_statistics"); | ||
| bool test_mode = is_test && (!trainable_stats); | ||
|
|
||
| bool global_stats = test_mode || use_global_stats; | ||
| const auto& data_layout_str = ctx.Attr<std::string>("data_layout"); | ||
| const auto &data_layout_str = ctx.Attr<std::string>("data_layout"); | ||
| const auto data_layout = framework::StringToDataLayout(data_layout_str); | ||
| PADDLE_ENFORCE_EQ(data_layout, DataLayout::kNCHW, | ||
| platform::errors::InvalidArgument( | ||
| "The 'data_layout' attribute must be NCHW. But " | ||
| "recevived 'data_layout' is [%s].", | ||
| data_layout_str)); | ||
| const auto* x = ctx.Input<Tensor>("X"); | ||
| const auto& x_dims = x->dims(); | ||
|
|
||
| const auto *x = ctx.Input<Tensor>("X"); | ||
| const auto &x_dims = x->dims(); | ||
| PADDLE_ENFORCE_EQ(x_dims.size(), 4, | ||
| platform::errors::InvalidArgument( | ||
| "The input tensor X's dimension must equal to 4. But " | ||
|
|
@@ -51,27 +55,42 @@ class BatchNormXPUKernel : public framework::OpKernel<T> { | |
| const int C = x_dims[1]; | ||
| const int H = x_dims[2]; | ||
| const int W = x_dims[3]; | ||
| const auto* scale = ctx.Input<Tensor>("Scale"); | ||
| const auto* bias = ctx.Input<Tensor>("Bias"); | ||
| const auto* x_data = x->data<T>(); | ||
| const auto* scale_data = scale->data<T>(); | ||
| const auto* bias_data = bias->data<T>(); | ||
| auto* y = ctx.Output<Tensor>("Y"); | ||
| auto* y_data = y->mutable_data<T>(ctx.GetPlace()); | ||
| auto& dev_ctx = ctx.template device_context<DeviceContext>(); | ||
| const auto *scale = ctx.Input<Tensor>("Scale"); | ||
| const auto *bias = ctx.Input<Tensor>("Bias"); | ||
| const auto *x_data = x->data<T>(); | ||
| const auto *scale_data = scale->data<float>(); | ||
| const auto *bias_data = bias->data<float>(); | ||
|
|
||
| auto *y = ctx.Output<Tensor>("Y"); | ||
| auto *mean_out = ctx.Output<Tensor>("MeanOut"); | ||
| auto *variance_out = ctx.Output<Tensor>("VarianceOut"); | ||
| auto *saved_mean = ctx.Output<Tensor>("SavedMean"); | ||
| auto *saved_variance = ctx.Output<Tensor>("SavedVariance"); | ||
|
|
||
| // alloc memory | ||
| auto *y_data = y->mutable_data<T>(ctx.GetPlace()); | ||
| mean_out->mutable_data<float>(ctx.GetPlace()); | ||
| variance_out->mutable_data<float>(ctx.GetPlace()); | ||
| saved_mean->mutable_data<float>(ctx.GetPlace()); | ||
| saved_variance->mutable_data<float>(ctx.GetPlace()); | ||
|
|
||
| auto &dev_ctx = ctx.template device_context<DeviceContext>(); | ||
|
|
||
| if (!global_stats) { | ||
| auto* mean_out = ctx.Output<Tensor>("MeanOut"); | ||
| auto* variance_out = ctx.Output<Tensor>("VarianceOut"); | ||
| auto* saved_mean = ctx.Output<Tensor>("SavedMean"); | ||
| auto* saved_variance = ctx.Output<Tensor>("SavedVariance"); | ||
| mean_out->mutable_data<T>(ctx.GetPlace()); | ||
| variance_out->mutable_data<T>(ctx.GetPlace()); | ||
| saved_mean->mutable_data<T>(ctx.GetPlace()); | ||
| saved_variance->mutable_data<T>(ctx.GetPlace()); | ||
| auto* mean_out_data = mean_out->data<T>(); | ||
| auto* variance_out_data = variance_out->data<T>(); | ||
| auto* saved_mean_data = saved_mean->data<T>(); | ||
| auto* saved_variance_data = saved_variance->data<T>(); | ||
| auto *mean_out_data = mean_out->data<float>(); | ||
| auto *variance_out_data = variance_out->data<float>(); | ||
| auto *saved_mean_data = saved_mean->data<float>(); | ||
| auto *saved_variance_data = saved_variance->data<float>(); | ||
|
|
||
| // if MomentumTensor is set, use MomentumTensor value, momentum | ||
| // is only used in this training branch | ||
| if (ctx.HasInput("MomentumTensor")) { | ||
| const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor"); | ||
| Tensor mom_cpu; | ||
| TensorCopySync(*mom_tensor, platform::CPUPlace(), &mom_cpu); | ||
| momentum = mom_tensor->data<float>()[0]; | ||
| } | ||
|
|
||
| int r = xpu::batch_norm<T>(dev_ctx.x_context(), x_data, y_data, N, C, H, | ||
| W, epsilon, momentum, scale_data, bias_data, | ||
| saved_mean_data, saved_variance_data, | ||
|
|
@@ -81,12 +100,10 @@ class BatchNormXPUKernel : public framework::OpKernel<T> { | |
| "The batch_norm XPU API return wrong value[%d %s]", | ||
| r, XPUAPIErrorMsg[r])); | ||
| } else { | ||
| const auto* mean = ctx.Input<Tensor>("Mean"); | ||
| const auto* variance = ctx.Input<Tensor>("Variance"); | ||
| const auto* mean_data = mean->data<float>(); | ||
| const auto* variance_data = variance->data<float>(); | ||
| const auto* x_data = x->data<float>(); | ||
| auto* y_data = y->mutable_data<float>(ctx.GetPlace()); | ||
| const auto *mean = ctx.Input<Tensor>("Mean"); | ||
| const auto *variance = ctx.Input<Tensor>("Variance"); | ||
| const auto *mean_data = mean->data<float>(); | ||
| const auto *variance_data = variance->data<float>(); | ||
| int r = xpu::batch_norm_infer(dev_ctx.x_context(), x_data, y_data, N, C, | ||
| H, W, epsilon, scale_data, bias_data, | ||
| mean_data, variance_data, true); | ||
|
|
@@ -99,24 +116,96 @@ class BatchNormXPUKernel : public framework::OpKernel<T> { | |
| } | ||
| }; | ||
|
|
||
| template <typename T> | ||
| static int calculate_inv_BN_Y(xpu::Context *ctx, T *x, const T *scale, | ||
| const T *bias, const T *mean, const T *variance, | ||
| const int N, const int C, const int M, | ||
| const T *y) { | ||
| PADDLE_ENFORCE_EQ(x, y, platform::errors::InvalidArgument( | ||
| "X and Y should be inplaced in inplace mode")); | ||
| std::vector<int> tensor_shape_vec({N, C, M}); | ||
| std::vector<int> array_shape_vec({1, C, 1}); | ||
| // y - bias | ||
| int r1 = | ||
| xpu::broadcast_sub<T>(ctx, bias, y, x, array_shape_vec, tensor_shape_vec); | ||
| // (y - bias) / scale | ||
| int r2 = xpu::broadcast_div<T>(ctx, scale, x, x, array_shape_vec, | ||
| tensor_shape_vec); | ||
| // (y - bias) / scale / variance | ||
| int r3 = xpu::broadcast_div<T>(ctx, variance, x, x, array_shape_vec, | ||
| tensor_shape_vec); | ||
| // (y - bias) / scale / variance + mean | ||
| int r4 = | ||
| xpu::broadcast_add<T>(ctx, mean, x, x, array_shape_vec, tensor_shape_vec); | ||
|
|
||
| return r1 + r2 + r3 + r4; | ||
| } | ||
|
|
||
| template <typename T> | ||
| static int calculate_inv_var(xpu::Context *ctx, const T *var, const T epsilon, | ||
| const int C, T *epsilon_data, T *inv_var) { | ||
| int r1 = constant(ctx, epsilon_data, 1, epsilon); | ||
| std::vector<int> tensor_shape_vec({C}); | ||
| std::vector<int> array_shape_vec({1}); | ||
| int r2 = xpu::broadcast_add<T>(ctx, epsilon_data, var, inv_var, | ||
| array_shape_vec, tensor_shape_vec); | ||
| int r3 = xpu::rsqrt<T>(ctx, inv_var, inv_var, C); | ||
| return r1 + r2 + r3; | ||
| } | ||
|
|
||
| template <typename DeviceContext, typename T> | ||
| class BatchNormGradXPUKernel : public framework::OpKernel<T> { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const override { | ||
| const auto* x = ctx.Input<Tensor>("X"); | ||
| const auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y")); | ||
| const auto* scale = ctx.Input<Tensor>("Scale"); | ||
| const auto* saved_mean = ctx.Input<Tensor>("SavedMean"); | ||
| // SavedVariance have been reverted in forward operator | ||
| const auto* saved_inv_variance = ctx.Input<Tensor>("SavedVariance"); | ||
| const auto& data_layout_str = ctx.Attr<std::string>("data_layout"); | ||
| void Compute(const framework::ExecutionContext &ctx) const override { | ||
| const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y")); | ||
| const auto *scale = ctx.Input<Tensor>("Scale"); | ||
| const auto *bias = ctx.Input<Tensor>("Bias"); | ||
|
|
||
| const auto &data_layout_str = ctx.Attr<std::string>("data_layout"); | ||
| bool use_global_stats = ctx.Attr<bool>("use_global_stats"); | ||
| const bool is_test = ctx.Attr<bool>("is_test"); | ||
| const float epsilon = ctx.Attr<float>("epsilon"); | ||
| const auto data_layout = framework::StringToDataLayout(data_layout_str); | ||
|
|
||
| // TODO(guozbin): Transform input tensor from NHWC to NCHW | ||
| PADDLE_ENFORCE_EQ(data_layout, DataLayout::kNCHW, | ||
| platform::errors::InvalidArgument( | ||
| "The 'data_layout' attribute must be NCHW. But " | ||
| "recevived 'data_layout' is [%s].", | ||
| data_layout_str)); | ||
| const auto& x_dims = x->dims(); | ||
|
|
||
| auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X")); | ||
| auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale")); | ||
| auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias")); | ||
|
|
||
| use_global_stats = is_test || use_global_stats; | ||
|
|
||
| // batch_norm with inplace as false will take X as grad input, which | ||
| // is same as cuDNN batch_norm backward calculation, batch_norm | ||
| // with inplace as true only take Y as input and X should be calculate | ||
| // by inverse operation of batch_norm on Y | ||
| const Tensor *x; | ||
| bool is_inplace; | ||
| if (ctx.HasInput("Y")) { | ||
| x = ctx.Input<Tensor>("Y"); | ||
| is_inplace = true; | ||
| // if the input of batch norm is stop_gradient, d_x is null. | ||
| if (d_x) { | ||
| PADDLE_ENFORCE_EQ(d_x, d_y, | ||
| platform::errors::InvalidArgument( | ||
| "X@GRAD and Y@GRAD not inplace in inplace mode")); | ||
| } | ||
| } else { | ||
| x = ctx.Input<Tensor>("X"); | ||
| is_inplace = false; | ||
| if (d_x) { | ||
| PADDLE_ENFORCE_NE( | ||
| d_x, d_y, platform::errors::InvalidArgument( | ||
| "X@GRAD and Y@GRAD inplaced in non-inplace mode")); | ||
| } | ||
| } | ||
|
|
||
| const auto &x_dims = x->dims(); | ||
| PADDLE_ENFORCE_EQ(x_dims.size(), 4, | ||
| platform::errors::InvalidArgument( | ||
| "The input tensor X's dimension must equal to 4. But " | ||
|
|
@@ -126,26 +215,96 @@ class BatchNormGradXPUKernel : public framework::OpKernel<T> { | |
| const int C = x_dims[1]; | ||
| const int H = x_dims[2]; | ||
| const int W = x_dims[3]; | ||
| const auto* x_data = x->data<T>(); | ||
| const auto* dy_data = dy->data<T>(); | ||
| const auto* scale_data = scale->data<T>(); | ||
| const auto* saved_mean_data = saved_mean->data<T>(); | ||
| const auto* saved_inv_variance_data = saved_inv_variance->data<T>(); | ||
| auto* dx = ctx.Output<Tensor>(framework::GradVarName("X")); | ||
| auto* dscale = ctx.Output<Tensor>(framework::GradVarName("Scale")); | ||
| auto* dbias = ctx.Output<Tensor>(framework::GradVarName("Bias")); | ||
| auto* dx_data = dx->mutable_data<T>(ctx.GetPlace()); | ||
| auto* dscale_data = dscale->mutable_data<T>(ctx.GetPlace()); | ||
| auto* dbias_data = dbias->mutable_data<T>(ctx.GetPlace()); | ||
| auto& dev_ctx = ctx.template device_context<DeviceContext>(); | ||
| int r = xpu::batch_norm_grad<T>(dev_ctx.x_context(), x_data, dy_data, | ||
| dx_data, N, C, H, W, scale_data, | ||
| saved_mean_data, saved_inv_variance_data, | ||
| dscale_data, dbias_data, true); | ||
| PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External( | ||
| "XPU API(batch_norm_grad) return " | ||
| "wrong value[%d %s]", | ||
| r, XPUAPIErrorMsg[r])); | ||
|
|
||
| const auto *x_data = x->data<T>(); | ||
| const auto *d_y_data = d_y->data<T>(); | ||
| const auto *scale_data = scale->data<float>(); | ||
|
|
||
| // init output | ||
| T *d_x_data = nullptr; | ||
| T *d_bias_data = nullptr; | ||
| T *d_scale_data = nullptr; | ||
| if (d_x) { | ||
| d_x_data = d_x->mutable_data<T>(ctx.GetPlace()); | ||
| } | ||
| if (d_scale && d_bias) { | ||
| d_scale_data = d_scale->mutable_data<float>(ctx.GetPlace()); | ||
| d_bias_data = d_bias->mutable_data<float>(ctx.GetPlace()); | ||
| } | ||
|
|
||
| PADDLE_ENFORCE_EQ( | ||
| scale->dims().size(), 1UL, | ||
| platform::errors::InvalidArgument( | ||
| "The size of scale's dimensions must equal to 1. But received: " | ||
| "the size of scale's dimensions is [%d], the dimensions of scale " | ||
| "is [%s].", | ||
| scale->dims().size(), scale->dims())); | ||
| PADDLE_ENFORCE_EQ( | ||
| scale->dims()[0], C, | ||
| platform::errors::InvalidArgument( | ||
| "The first dimension of scale must equal to Channels[%d]. But " | ||
| "received: the first dimension of scale is [%d]", | ||
| C, scale->dims()[0])); | ||
|
|
||
| auto &dev_ctx = ctx.template device_context<DeviceContext>(); | ||
| xpu::ctx_guard RAII_GUARD(dev_ctx.x_context()); | ||
|
|
||
| const T *mean_data = nullptr; | ||
| const T *inv_var_data = nullptr; | ||
|
|
||
| // TODO(guozibin): hadle the situation case of N * H * W = 1 | ||
| if (!use_global_stats) { | ||
| const auto *saved_mean = ctx.Input<Tensor>("SavedMean"); | ||
| // SavedVariance have been reverted in forward operator | ||
| const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance"); | ||
| mean_data = saved_mean->data<float>(); | ||
| inv_var_data = saved_inv_variance->data<float>(); | ||
| } else { | ||
| const auto *running_mean = ctx.Input<Tensor>("Mean"); | ||
| const auto *running_variance = ctx.Input<Tensor>("Variance"); | ||
| mean_data = running_mean->data<float>(); | ||
| inv_var_data = running_variance->data<float>(); | ||
| float *running_inv_var_data = | ||
| RAII_GUARD.alloc_l3_or_gm<float>(running_variance->numel()); | ||
| float *epsilon_data = RAII_GUARD.alloc_l3_or_gm<float>(1); | ||
| int r1 = calculate_inv_var(dev_ctx.x_context(), inv_var_data, epsilon, C, | ||
| epsilon_data, running_inv_var_data); | ||
| PADDLE_ENFORCE_EQ(r1, XPU_SUCCESS, platform::errors::External( | ||
| "XPU API(batch_norm_grad " | ||
| "calculate_inv_var function) " | ||
| "return wrong value[%d %s]", | ||
| r1, XPUAPIErrorMsg[r1])); | ||
| inv_var_data = running_inv_var_data; | ||
| } | ||
| if (is_inplace) { | ||
| auto px = *x; | ||
|
||
| int r2 = calculate_inv_BN_Y( | ||
| dev_ctx.x_context(), px.mutable_data<T>(ctx.GetPlace()), | ||
| scale->data<float>(), bias->data<float>(), mean_data, inv_var_data, N, | ||
| C, H * W, x->data<T>()); | ||
| PADDLE_ENFORCE_EQ(r2, XPU_SUCCESS, platform::errors::External( | ||
| "XPU API(batch_norm_grad " | ||
| "calculate_inv_BN_Y function) " | ||
| "return wrong value[%d %s]", | ||
| r2, XPUAPIErrorMsg[r2])); | ||
| } | ||
| if (!d_x) { | ||
| d_x_data = RAII_GUARD.alloc_l3_or_gm<T>(x->numel()); | ||
| } | ||
| if (!d_scale) { | ||
| d_scale_data = RAII_GUARD.alloc_l3_or_gm<float>(C); | ||
QingshuChen marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| } | ||
| if (!d_bias_data) { | ||
| d_bias_data = RAII_GUARD.alloc_l3_or_gm<float>(C); | ||
| } | ||
|
|
||
| int r3 = xpu::batch_norm_grad<T>( | ||
| dev_ctx.x_context(), x_data, d_y_data, d_x_data, N, C, H, W, scale_data, | ||
| mean_data, inv_var_data, d_scale_data, d_bias_data, true); | ||
| PADDLE_ENFORCE_EQ(r3, XPU_SUCCESS, platform::errors::External( | ||
| "XPU API(batch_norm_grad) return " | ||
| "wrong value[%d %s]", | ||
| r3, XPUAPIErrorMsg[r3])); | ||
| } | ||
| }; | ||
|
|
||
|
|
||
Uh oh!
There was an error while loading. Please reload this page.