Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
279 changes: 219 additions & 60 deletions paddle/fluid/operators/batch_norm_op_xpu.cc
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,8 @@ limitations under the License. */
#ifdef PADDLE_WITH_XPU

#include "paddle/fluid/operators/batch_norm_op.h"
#include <iterator>
#include <vector>

namespace paddle {
namespace operators {
Expand All @@ -25,23 +27,25 @@ using DDim = framework::DDim;
template <typename DeviceContext, typename T>
class BatchNormXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
void Compute(const framework::ExecutionContext &ctx) const override {
const auto epsilon = ctx.Attr<float>("epsilon");
const auto momentum = ctx.Attr<float>("momentum");
float momentum = ctx.Attr<float>("momentum");
const auto is_test = ctx.Attr<bool>("is_test");
const auto use_global_stats = ctx.Attr<bool>("use_global_stats");
const auto trainable_stats = ctx.Attr<bool>("trainable_statistics");
bool test_mode = is_test && (!trainable_stats);

bool global_stats = test_mode || use_global_stats;
const auto& data_layout_str = ctx.Attr<std::string>("data_layout");
const auto &data_layout_str = ctx.Attr<std::string>("data_layout");
const auto data_layout = framework::StringToDataLayout(data_layout_str);
PADDLE_ENFORCE_EQ(data_layout, DataLayout::kNCHW,
platform::errors::InvalidArgument(
"The 'data_layout' attribute must be NCHW. But "
"recevived 'data_layout' is [%s].",
data_layout_str));
const auto* x = ctx.Input<Tensor>("X");
const auto& x_dims = x->dims();

const auto *x = ctx.Input<Tensor>("X");
const auto &x_dims = x->dims();
PADDLE_ENFORCE_EQ(x_dims.size(), 4,
platform::errors::InvalidArgument(
"The input tensor X's dimension must equal to 4. But "
Expand All @@ -51,27 +55,42 @@ class BatchNormXPUKernel : public framework::OpKernel<T> {
const int C = x_dims[1];
const int H = x_dims[2];
const int W = x_dims[3];
const auto* scale = ctx.Input<Tensor>("Scale");
const auto* bias = ctx.Input<Tensor>("Bias");
const auto* x_data = x->data<T>();
const auto* scale_data = scale->data<T>();
const auto* bias_data = bias->data<T>();
auto* y = ctx.Output<Tensor>("Y");
auto* y_data = y->mutable_data<T>(ctx.GetPlace());
auto& dev_ctx = ctx.template device_context<DeviceContext>();
const auto *scale = ctx.Input<Tensor>("Scale");
const auto *bias = ctx.Input<Tensor>("Bias");
const auto *x_data = x->data<T>();
const auto *scale_data = scale->data<float>();
const auto *bias_data = bias->data<float>();

auto *y = ctx.Output<Tensor>("Y");
auto *mean_out = ctx.Output<Tensor>("MeanOut");
auto *variance_out = ctx.Output<Tensor>("VarianceOut");
auto *saved_mean = ctx.Output<Tensor>("SavedMean");
auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

// alloc memory
auto *y_data = y->mutable_data<T>(ctx.GetPlace());
mean_out->mutable_data<float>(ctx.GetPlace());
variance_out->mutable_data<float>(ctx.GetPlace());
saved_mean->mutable_data<float>(ctx.GetPlace());
saved_variance->mutable_data<float>(ctx.GetPlace());

auto &dev_ctx = ctx.template device_context<DeviceContext>();

if (!global_stats) {
auto* mean_out = ctx.Output<Tensor>("MeanOut");
auto* variance_out = ctx.Output<Tensor>("VarianceOut");
auto* saved_mean = ctx.Output<Tensor>("SavedMean");
auto* saved_variance = ctx.Output<Tensor>("SavedVariance");
mean_out->mutable_data<T>(ctx.GetPlace());
variance_out->mutable_data<T>(ctx.GetPlace());
saved_mean->mutable_data<T>(ctx.GetPlace());
saved_variance->mutable_data<T>(ctx.GetPlace());
auto* mean_out_data = mean_out->data<T>();
auto* variance_out_data = variance_out->data<T>();
auto* saved_mean_data = saved_mean->data<T>();
auto* saved_variance_data = saved_variance->data<T>();
auto *mean_out_data = mean_out->data<float>();
auto *variance_out_data = variance_out->data<float>();
auto *saved_mean_data = saved_mean->data<float>();
auto *saved_variance_data = saved_variance->data<float>();

// if MomentumTensor is set, use MomentumTensor value, momentum
// is only used in this training branch
if (ctx.HasInput("MomentumTensor")) {
const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
Tensor mom_cpu;
TensorCopySync(*mom_tensor, platform::CPUPlace(), &mom_cpu);
momentum = mom_tensor->data<float>()[0];
}

int r = xpu::batch_norm<T>(dev_ctx.x_context(), x_data, y_data, N, C, H,
W, epsilon, momentum, scale_data, bias_data,
saved_mean_data, saved_variance_data,
Expand All @@ -81,12 +100,10 @@ class BatchNormXPUKernel : public framework::OpKernel<T> {
"The batch_norm XPU API return wrong value[%d %s]",
r, XPUAPIErrorMsg[r]));
} else {
const auto* mean = ctx.Input<Tensor>("Mean");
const auto* variance = ctx.Input<Tensor>("Variance");
const auto* mean_data = mean->data<float>();
const auto* variance_data = variance->data<float>();
const auto* x_data = x->data<float>();
auto* y_data = y->mutable_data<float>(ctx.GetPlace());
const auto *mean = ctx.Input<Tensor>("Mean");
const auto *variance = ctx.Input<Tensor>("Variance");
const auto *mean_data = mean->data<float>();
const auto *variance_data = variance->data<float>();
int r = xpu::batch_norm_infer(dev_ctx.x_context(), x_data, y_data, N, C,
H, W, epsilon, scale_data, bias_data,
mean_data, variance_data, true);
Expand All @@ -99,24 +116,96 @@ class BatchNormXPUKernel : public framework::OpKernel<T> {
}
};

template <typename T>
static int calculate_inv_BN_Y(xpu::Context *ctx, T *x, const T *scale,
const T *bias, const T *mean, const T *variance,
const int N, const int C, const int M,
const T *y) {
PADDLE_ENFORCE_EQ(x, y, platform::errors::InvalidArgument(
"X and Y should be inplaced in inplace mode"));
std::vector<int> tensor_shape_vec({N, C, M});
std::vector<int> array_shape_vec({1, C, 1});
// y - bias
int r1 =
xpu::broadcast_sub<T>(ctx, bias, y, x, array_shape_vec, tensor_shape_vec);
// (y - bias) / scale
int r2 = xpu::broadcast_div<T>(ctx, scale, x, x, array_shape_vec,
tensor_shape_vec);
// (y - bias) / scale / variance
int r3 = xpu::broadcast_div<T>(ctx, variance, x, x, array_shape_vec,
tensor_shape_vec);
// (y - bias) / scale / variance + mean
int r4 =
xpu::broadcast_add<T>(ctx, mean, x, x, array_shape_vec, tensor_shape_vec);

return r1 + r2 + r3 + r4;
}

template <typename T>
static int calculate_inv_var(xpu::Context *ctx, const T *var, const T epsilon,
const int C, T *epsilon_data, T *inv_var) {
int r1 = constant(ctx, epsilon_data, 1, epsilon);
std::vector<int> tensor_shape_vec({C});
std::vector<int> array_shape_vec({1});
int r2 = xpu::broadcast_add<T>(ctx, epsilon_data, var, inv_var,
array_shape_vec, tensor_shape_vec);
int r3 = xpu::rsqrt<T>(ctx, inv_var, inv_var, C);
return r1 + r2 + r3;
}

template <typename DeviceContext, typename T>
class BatchNormGradXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const auto* x = ctx.Input<Tensor>("X");
const auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
const auto* scale = ctx.Input<Tensor>("Scale");
const auto* saved_mean = ctx.Input<Tensor>("SavedMean");
// SavedVariance have been reverted in forward operator
const auto* saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
const auto& data_layout_str = ctx.Attr<std::string>("data_layout");
void Compute(const framework::ExecutionContext &ctx) const override {
const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
const auto *scale = ctx.Input<Tensor>("Scale");
const auto *bias = ctx.Input<Tensor>("Bias");

const auto &data_layout_str = ctx.Attr<std::string>("data_layout");
bool use_global_stats = ctx.Attr<bool>("use_global_stats");
const bool is_test = ctx.Attr<bool>("is_test");
const float epsilon = ctx.Attr<float>("epsilon");
const auto data_layout = framework::StringToDataLayout(data_layout_str);

// TODO(guozbin): Transform input tensor from NHWC to NCHW
PADDLE_ENFORCE_EQ(data_layout, DataLayout::kNCHW,
platform::errors::InvalidArgument(
"The 'data_layout' attribute must be NCHW. But "
"recevived 'data_layout' is [%s].",
data_layout_str));
const auto& x_dims = x->dims();

auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

use_global_stats = is_test || use_global_stats;

// batch_norm with inplace as false will take X as grad input, which
// is same as cuDNN batch_norm backward calculation, batch_norm
// with inplace as true only take Y as input and X should be calculate
// by inverse operation of batch_norm on Y
const Tensor *x;
bool is_inplace;
if (ctx.HasInput("Y")) {
x = ctx.Input<Tensor>("Y");
is_inplace = true;
// if the input of batch norm is stop_gradient, d_x is null.
if (d_x) {
PADDLE_ENFORCE_EQ(d_x, d_y,
platform::errors::InvalidArgument(
"X@GRAD and Y@GRAD not inplace in inplace mode"));
}
} else {
x = ctx.Input<Tensor>("X");
is_inplace = false;
if (d_x) {
PADDLE_ENFORCE_NE(
d_x, d_y, platform::errors::InvalidArgument(
"X@GRAD and Y@GRAD inplaced in non-inplace mode"));
}
}

const auto &x_dims = x->dims();
PADDLE_ENFORCE_EQ(x_dims.size(), 4,
platform::errors::InvalidArgument(
"The input tensor X's dimension must equal to 4. But "
Expand All @@ -126,26 +215,96 @@ class BatchNormGradXPUKernel : public framework::OpKernel<T> {
const int C = x_dims[1];
const int H = x_dims[2];
const int W = x_dims[3];
const auto* x_data = x->data<T>();
const auto* dy_data = dy->data<T>();
const auto* scale_data = scale->data<T>();
const auto* saved_mean_data = saved_mean->data<T>();
const auto* saved_inv_variance_data = saved_inv_variance->data<T>();
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dscale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto* dbias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
auto* dscale_data = dscale->mutable_data<T>(ctx.GetPlace());
auto* dbias_data = dbias->mutable_data<T>(ctx.GetPlace());
auto& dev_ctx = ctx.template device_context<DeviceContext>();
int r = xpu::batch_norm_grad<T>(dev_ctx.x_context(), x_data, dy_data,
dx_data, N, C, H, W, scale_data,
saved_mean_data, saved_inv_variance_data,
dscale_data, dbias_data, true);
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
"XPU API(batch_norm_grad) return "
"wrong value[%d %s]",
r, XPUAPIErrorMsg[r]));

const auto *x_data = x->data<T>();
const auto *d_y_data = d_y->data<T>();
const auto *scale_data = scale->data<float>();

// init output
T *d_x_data = nullptr;
T *d_bias_data = nullptr;
T *d_scale_data = nullptr;
if (d_x) {
d_x_data = d_x->mutable_data<T>(ctx.GetPlace());
}
if (d_scale && d_bias) {
d_scale_data = d_scale->mutable_data<float>(ctx.GetPlace());
d_bias_data = d_bias->mutable_data<float>(ctx.GetPlace());
}

PADDLE_ENFORCE_EQ(
scale->dims().size(), 1UL,
platform::errors::InvalidArgument(
"The size of scale's dimensions must equal to 1. But received: "
"the size of scale's dimensions is [%d], the dimensions of scale "
"is [%s].",
scale->dims().size(), scale->dims()));
PADDLE_ENFORCE_EQ(
scale->dims()[0], C,
platform::errors::InvalidArgument(
"The first dimension of scale must equal to Channels[%d]. But "
"received: the first dimension of scale is [%d]",
C, scale->dims()[0]));

auto &dev_ctx = ctx.template device_context<DeviceContext>();
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());

const T *mean_data = nullptr;
const T *inv_var_data = nullptr;

// TODO(guozibin): hadle the situation case of N * H * W = 1
if (!use_global_stats) {
const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
// SavedVariance have been reverted in forward operator
const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
mean_data = saved_mean->data<float>();
inv_var_data = saved_inv_variance->data<float>();
} else {
const auto *running_mean = ctx.Input<Tensor>("Mean");
const auto *running_variance = ctx.Input<Tensor>("Variance");
mean_data = running_mean->data<float>();
inv_var_data = running_variance->data<float>();
float *running_inv_var_data =
RAII_GUARD.alloc_l3_or_gm<float>(running_variance->numel());
float *epsilon_data = RAII_GUARD.alloc_l3_or_gm<float>(1);
int r1 = calculate_inv_var(dev_ctx.x_context(), inv_var_data, epsilon, C,
epsilon_data, running_inv_var_data);
PADDLE_ENFORCE_EQ(r1, XPU_SUCCESS, platform::errors::External(
"XPU API(batch_norm_grad "
"calculate_inv_var function) "
"return wrong value[%d %s]",
r1, XPUAPIErrorMsg[r1]));
inv_var_data = running_inv_var_data;
}
if (is_inplace) {
auto px = *x;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

能不能考虑把is_inplace, use_global_stats 作为参数,传给api, 在api侧,增加kernel实现功能呢?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

能不能考虑把is_inplace, use_global_stats 作为参数,传给api, 在api侧,增加kernel实现功能呢?

因batch_norm算子内部比较复杂,修改起来周期可能会比较长。另修改起来对现有接口改动比较大,可能会影响到其他使用该api的地方,如果要修改可能需要另行实现一个batch_norm_v2的op。计划目前先通过此方法绕过,后续在针对性能进行优化。

int r2 = calculate_inv_BN_Y(
dev_ctx.x_context(), px.mutable_data<T>(ctx.GetPlace()),
scale->data<float>(), bias->data<float>(), mean_data, inv_var_data, N,
C, H * W, x->data<T>());
PADDLE_ENFORCE_EQ(r2, XPU_SUCCESS, platform::errors::External(
"XPU API(batch_norm_grad "
"calculate_inv_BN_Y function) "
"return wrong value[%d %s]",
r2, XPUAPIErrorMsg[r2]));
}
if (!d_x) {
d_x_data = RAII_GUARD.alloc_l3_or_gm<T>(x->numel());
}
if (!d_scale) {
d_scale_data = RAII_GUARD.alloc_l3_or_gm<float>(C);
}
if (!d_bias_data) {
d_bias_data = RAII_GUARD.alloc_l3_or_gm<float>(C);
}

int r3 = xpu::batch_norm_grad<T>(
dev_ctx.x_context(), x_data, d_y_data, d_x_data, N, C, H, W, scale_data,
mean_data, inv_var_data, d_scale_data, d_bias_data, true);
PADDLE_ENFORCE_EQ(r3, XPU_SUCCESS, platform::errors::External(
"XPU API(batch_norm_grad) return "
"wrong value[%d %s]",
r3, XPUAPIErrorMsg[r3]));
}
};

Expand Down
3 changes: 3 additions & 0 deletions paddle/fluid/platform/device/xpu/xpu2_op_list.h
Original file line number Diff line number Diff line change
Expand Up @@ -262,6 +262,9 @@ XPUOpMap& get_kl2_ops() {
pOpKernelType(vartype::INT32, XPUPlace()),
pOpKernelType(vartype::BOOL, XPUPlace()),
pOpKernelType(vartype::FP32, XPUPlace())})},
{"roi_align", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"roi_align_grad",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"scale", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"scale", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace()),
pOpKernelType(vartype::FP16, XPUPlace()),
Expand Down
Loading