Skip to content

[Dy2Stat]Consider InputSpec.name to calculate Cachekey hash id #38273

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Dec 24, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions python/paddle/fluid/dygraph/dygraph_to_static/function_spec.py
Original file line number Diff line number Diff line change
Expand Up @@ -394,3 +394,34 @@ def _set_spec_stop_gradient(spec, stop_gradient):
"""
assert isinstance(spec, paddle.static.InputSpec)
spec.stop_gradient = stop_gradient


def _hash_spec_names(args_specs, kwargs_specs):
"""
Generater hash spec with args/kwargs InputSpec names.
Consider the following InputSpecs with same shape/dtype except for name:
1. [InputSpec([3,3], 'float32', 'x'), InputSpec([3,3], 'float32', 'x')]
2. [InputSpec([3,3], 'float32', 'x'), InputSpec([3,3], 'float32', 'y')]
Under @to_static, we should generate two different program not just one, because
the former has one input ('x'), but the latter has two input ('x', 'y').
"""
spec_names = [
spec.name for spec in flatten(args_specs)
if isinstance(spec, paddle.static.InputSpec)
]
spec_names += [
spec.name for spec in flatten(kwargs_specs)
if isinstance(spec, paddle.static.InputSpec)
]
i, name_ids = 0, {}

def to_idx(name):
nonlocal i
if name not in name_ids:
name_ids[name] = i
i += 1
return name_ids[name]

value = [to_idx(name) for name in spec_names]

return tuple(value)
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@
from paddle.fluid.dygraph.dygraph_to_static.utils import type_name
from paddle.fluid.dygraph.dygraph_to_static.utils import unwrap
from paddle.fluid.dygraph.dygraph_to_static.utils import make_hashable
from paddle.fluid.dygraph.dygraph_to_static.function_spec import FunctionSpec
from paddle.fluid.dygraph.dygraph_to_static.function_spec import FunctionSpec, _hash_spec_names
from paddle.fluid.dygraph.dygraph_to_static.function_spec import get_buffers, get_parameters
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager

Expand Down Expand Up @@ -147,7 +147,7 @@ class CacheKey(object):
"""
__slots__ = [
'function_spec', 'input_args_with_spec', 'input_kwargs_with_spec',
'class_instance', 'kwargs'
'class_instance', 'kwargs', '_spec_names_id'
]

def __init__(self, function_spec, input_args_with_spec,
Expand All @@ -168,6 +168,8 @@ def __init__(self, function_spec, input_args_with_spec,
self.class_instance = class_instance
# NOTE: `kwargs` is usually not considered as basic member for `__hash__`
self.kwargs = kwargs
self._spec_names_id = _hash_spec_names(input_args_with_spec,
input_kwargs_with_spec)

@classmethod
def from_func_and_args(cls, function_spec, args, kwargs, class_instance):
Expand Down Expand Up @@ -197,7 +199,7 @@ def __hash__(self):
return hash((id(self.function_spec),
make_hashable(self.input_args_with_spec, error_msg),
make_hashable(self.input_kwargs_with_spec, error_msg),
self.class_instance))
self._spec_names_id, self.class_instance))

def __eq__(self, other):
return (type(self) is type(other)) and hash(self) == hash(other)
Expand Down Expand Up @@ -703,6 +705,7 @@ class ProgramCache(object):
"""

def __init__(self):
# {hash_id : (concrete_program, partial_layer)}
self._caches = collections.OrderedDict()

def _build_once(self, cache_key):
Expand All @@ -718,9 +721,9 @@ def __getitem__(self, item):
if not isinstance(item, CacheKey):
raise ValueError('type(item) should be CacheKey, but received %s' %
type_name(item))

if item not in self._caches:
self._caches[item] = self._build_once(item)
item_id = hash(item)
if item_id not in self._caches:
self._caches[item_id] = self._build_once(item)
# Note: raise warnings if number of traced program is more than `max_tracing_count`
current_tracing_count = len(self._caches)
if current_tracing_count > MAX_TRACED_PROGRAM_COUNT:
Expand All @@ -729,18 +732,19 @@ def __getitem__(self, item):
"The reason may be: (1) passing tensors with different shapes, (2) passing python objects instead of tensors.".
format(current_tracing_count, MAX_TRACED_PROGRAM_COUNT))

return self._caches[item]
return self._caches[item_id]

def get_program(self, item):
if not isinstance(item, CacheKey):
raise ValueError(
"Input item's type should be FunctionSpec, but received %s" %
type_name(item))
if item not in self._caches:
item_id = hash(item)
if item_id not in self._caches:
raise RuntimeError(
"Failed to find program for input item, please decorate input function by `@paddle.jit.to_static`."
)
return self._caches[item]
return self._caches[item_id]

def last(self):
assert len(
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.nn import Layer
import numpy as np
import unittest


class Net(Layer):
def __init__(self):
super(Net, self).__init__()
self.fc = paddle.nn.Linear(16, 3)

def forward(self, x, y, m, n):
inputs = [x, y, m, n]
outs = []
for var in inputs:
out = paddle.reshape(x, [-1, 16])
out = self.fc(out)
outs.append(out)

out = paddle.stack(outs)
return paddle.sum(out)


class TestArgsSpecName(unittest.TestCase):
def read_from_dataset(self):
self.x = paddle.randn([4, 2, 8])
self.y = paddle.randn([4, 2, 8])
self.m = paddle.randn([4, 2, 8])
self.n = paddle.randn([4, 2, 8])

def test_spec_name_hash(self):
net = Net()
net = paddle.jit.to_static(net)
# Convert into program with four input
self.read_from_dataset()
self.run_test(net, [self.x, self.y, self.m, self.n], 1, [0, 1, 2, 3])

# Convert into program with three input
self.read_from_dataset()
self.run_test(net, [self.x, self.x, self.m, self.n], 2, [0, 0, 1, 2])

# Convert into program with two input
self.read_from_dataset()
self.run_test(net, [self.x, self.x, self.m, self.m], 3, [0, 0, 1, 1])

# Use Cache Program
self.read_from_dataset()
self.run_test(net, [self.n, self.n, self.y, self.y], 3, [0, 0, 1, 1])

# Convert into program with two input
self.read_from_dataset()
self.run_test(net, [self.x, self.y, self.x, self.y], 4, [0, 1, 0, 1])

# Use Cache Program
self.read_from_dataset()
self.run_test(net, [self.m, self.n, self.m, self.n], 4, [0, 1, 0, 1])

# Convert into program with one input
self.read_from_dataset()
self.run_test(net, [self.x, self.x, self.x, self.x], 5, [0, 0, 0, 0])

# Use Cache Program
self.read_from_dataset()
self.run_test(net, [self.m, self.m, self.m, self.m], 5, [0, 0, 0, 0])

def run_test(self, net, inputs, trace_count, mode):
out = net(*inputs)
self.assertEqual(net.forward.get_traced_count(), trace_count)
self.assert_feed_mode(net.forward.inputs, mode)

def assert_feed_mode(self, inputs, expect_mode):
assert isinstance(inputs, list)
assert isinstance(expect_mode, list)
in_names = [var.name for var in inputs]

i, name_ids = 0, {}

def to_idx(name):
nonlocal i
if name not in name_ids:
name_ids[name] = i
i += 1
return name_ids[name]

mode = [to_idx(name) for name in in_names]
self.assertEquals(mode, expect_mode)


if __name__ == '__main__':
unittest.main()