Skip to content

add matmulv2_transpose_reshape_pass ut #37416

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Dec 27, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 24 additions & 1 deletion paddle/fluid/operators/matmul_v2_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -194,9 +194,32 @@ class MatMulV2Op : public framework::OperatorWithKernel {
"received %d",
reshape_out_size));

auto it = std::find(reshape_out.begin(), reshape_out.end(), -1);
// int num_negative = std::count(reshape_out.begin(), reshape_out.end(),
// -1);
// PADDLE_ENFORCE_LE(num_negative, 1,
// platform::errors::InvalidArgument(
// "The max number of -1 in fused_reshape_Out is 1 "
// "but received %d.",
// num_negative));

// auto it_zero = std::find(reshape_out.begin(), reshape_out.end(), 0);
// if (it_zero != reshape_out.end()) {
// for (uint64_t i = 0; i < reshape_out.size(); i++) {
// if (reshape_out[i] == 0) {
// PADDLE_ENFORCE_LT(
// i, ddim_out.size(),
// platform::errors::InvalidArgument(
// "The index of 0 in fused_reshape_Out ",
// "should be less than output dim size, ",
// "but the index is %d and output dim size is %d", i,
// ddim_out.size()));
// reshape_out[i] = ddim_out.at(i);
// }
// }
// }

// if "-1" is present then one of reshape dims must be infered
auto it = std::find(reshape_out.begin(), reshape_out.end(), -1);
if (it != reshape_out.end()) {
int index = std::distance(reshape_out.begin(), it);

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,7 @@ if (WITH_MKLDNN)
set_tests_properties(test_mkldnn_conv_hard_sigmoid_fuse_pass PROPERTIES TIMEOUT 300)
set_tests_properties(test_mkldnn_conv_hard_swish_fuse_pass PROPERTIES TIMEOUT 300)
set_tests_properties(test_mkldnn_batch_norm_act_fuse_pass PROPERTIES TIMEOUT 100)
set_tests_properties(test_mkldnn_matmul_v2_transpose_reshape_fuse_pass PROPERTIES TIMEOUT 100)
set_tests_properties(test_mkldnn_conv_transpose_bias_fuse_pass PROPERTIES TIMEOUT 100)
set_tests_properties(test_conv_eltwiseadd_bn_fuse_pass PROPERTIES TIMEOUT 300)
endif()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,71 +12,142 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
from auto_scan_test import PassAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import numpy as np
from inference_pass_test import InferencePassTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import PassVersionChecker


class TestMatmulV2OneDNNTransposeReshapeFusePass(InferencePassTest):
def setUp(self):
self.set_params()
self.tranpose_perm = [0, 2, 1, 3]
self.pass_name = 'matmul_v2_transpose_reshape_fuse_pass'

with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(
name="data", shape=self.data_shape, dtype="float32")
weight = fluid.layers.create_parameter(
shape=self.weight_shape, dtype="float32")
matmul = paddle.matmul(
data,
weight,
transpose_x=self.transpose_x,
transpose_y=self.transpose_y)
transpose = fluid.layers.transpose(matmul, self.tranpose_perm)
reshape = fluid.layers.reshape(transpose, shape=self.reshape_shape)

self.fetch_list = [reshape]
self.enable_mkldnn = True

def set_params(self):
self.data_shape = [-1, 3, 100, 110]
self.weight_shape = [1, 3, 110, 100]
self.feeds = {
"data": np.random.random((1, 3, 100, 110)).astype("float32")
}
self.transpose_x = False
self.transpose_y = False
self.reshape_shape = [3, 100, 100]

def test_check_output(self):
use_gpu = False
self.check_output_with_option(use_gpu)

def test_pass_compatible(self):
self.assertTrue(PassVersionChecker.IsCompatible(self.pass_name))


class TestMatmulV2OneDNNTransposeReshapeFusePassDifferentDims(
TestMatmulV2OneDNNTransposeReshapeFusePass):
def set_params(self):
self.data_shape = [-1, 4, 100, 80]
self.weight_shape = [1, 4, 80, 100]
self.feeds = {
"data": np.random.random((1, 4, 100, 80)).astype("float32")
}
self.transpose_x = True
self.transpose_y = True
self.reshape_shape = [8, 40, 80]
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest

import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st


class TestMatmulv2TransposeReshapeMkldnnFusePass(PassAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
if program_config.inputs["input_data1"].shape[
-4] != 1 and program_config.inputs["input_data2"].shape[
-4] != 1:
if program_config.inputs["input_data1"].shape[
-4] != program_config.inputs["input_data2"].shape[-4]:
return False

if program_config.inputs["input_data1"].shape[
-3] != 1 and program_config.inputs["input_data2"].shape[
-3] != 1:
if program_config.inputs["input_data1"].shape[
-3] != program_config.inputs["input_data2"].shape[-3]:
return False

attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# If the problem has been fixed, the judgment
# needs to be deleted!!!
if 0 in attrs[2]['shape']:
return False

return True

def sample_program_config(self, draw):
transpose_X = draw(st.booleans())
transpose_Y = draw(st.booleans())
axis = draw(st.sampled_from([[0, 2, 1, 3]]))
shape = draw(st.sampled_from([[0, -1, 128], [-1, 1, 64], [1, -1, 32]]))
batch_size1 = draw(st.integers(min_value=1, max_value=4))
batch_size2 = draw(st.integers(min_value=1, max_value=4))
channel1 = draw(st.sampled_from([1, 16, 32, 64]))
channel2 = draw(st.sampled_from([1, 16, 32, 64]))
input_dim = draw(st.sampled_from([16, 32, 64]))

def generate_input(type):
if transpose_X and transpose_Y:
shape_x = [batch_size1, channel1, input_dim, 32]
shape_y = [batch_size2, channel2, 64, input_dim]
elif transpose_X:
shape_x = [batch_size1, channel1, input_dim, 32]
shape_y = [batch_size2, channel2, input_dim, 64]
elif transpose_Y:
shape_x = [batch_size1, channel1, 32, input_dim]
shape_y = [batch_size2, channel2, 8, input_dim]
else:
shape_x = [batch_size1, channel1, 32, input_dim]
shape_y = [batch_size2, channel2, input_dim, 16]

if type == "x":
return np.random.random(shape_x).astype(np.float32)
else:
return np.random.random(shape_y).astype(np.float32)

matmul_op = OpConfig(
type="matmul_v2",
inputs={"X": ["input_data1"],
"Y": ["input_data2"]},
outputs={"Out": ["matmul_output"]},
attrs={
"trans_x": transpose_X,
"trans_y": transpose_Y,
"fused_reshape_X": [],
"fused_reshape_Y": [],
"fused_transpose_X": [],
"fused_transpose_Y": [],
"fused_reshape_Out": [],
"fused_transpose_Out": []
})

transpose2_op = OpConfig(
type="transpose2",
inputs={"X": ["matmul_output"]},
outputs={
"Out": ["transpose2_output"],
"XShape": ["transpose2_xshape"]
},
attrs={'axis': axis})

reshape2_op = OpConfig(
type="reshape2",
inputs={"X": ["transpose2_output"]},
outputs={
"Out": ["reshape2_output"],
"XShape": ["reshape2_xshape"]
},
attrs={'shape': shape})

model_net = [matmul_op, transpose2_op, reshape2_op]

program_config = ProgramConfig(
ops=model_net,
weights={},
inputs={
"input_data1":
TensorConfig(data_gen=partial(generate_input, "x")),
"input_data2":
TensorConfig(data_gen=partial(generate_input, "y"))
},
outputs=["reshape2_output"])

return program_config

def sample_predictor_configs(self, program_config):
# map_matmul_v2_to_matmul_pass will affect the type of final fused op
fused_op = "matmul_v2"
input1_dim1 = program_config.inputs["input_data1"].shape[0]
input2_dim1 = program_config.inputs["input_data2"].shape[0]
input1_dim2 = program_config.inputs["input_data1"].shape[1]
input2_dim2 = program_config.inputs["input_data2"].shape[1]
if input1_dim1 == input2_dim1 and input1_dim2 == input2_dim2:
fused_op = "matmul"

config = self.create_inference_config(use_mkldnn=True)
yield config, [fused_op], (1e-5, 1e-5)

def test(self):
self.run_and_statis(
quant=False, passes=["matmul_v2_transpose_reshape_fuse_pass"])


if __name__ == "__main__":
paddle.enable_static()
unittest.main()