Skip to content

Added stack FP32 FWD oneDNN kernel #37002

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Nov 10, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
143 changes: 143 additions & 0 deletions paddle/fluid/operators/mkldnn/stack_mkldnn_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/utils.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::Tensor;
using framework::LoDTensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::concat;
using mkldnn::stream;
using platform::to_void_cast;

template <typename T>
class StackMKLDNNHandler
: public platform::MKLDNNHandlerNoCachingT<T, dnnl::concat> {
public:
StackMKLDNNHandler(const framework::ExecutionContext& ctx,
const mkldnn::engine mkldnn_engine,
const std::vector<const Tensor*>& inputs, Tensor* output)
: platform::MKLDNNHandlerNoCachingT<T, dnnl::concat>(mkldnn_engine,
ctx.GetPlace()) {
int stack_axis = ctx.Attr<int>("axis");

int ndims = inputs[0]->dims().size();

if (stack_axis < 0) {
stack_axis = ndims + 1 + stack_axis; // +1 to match output's ndims
}

// in stack op all inputs must have same dims
auto input_dims = framework::vectorize<int64_t>(inputs[0]->dims());

memory::data_type dt = framework::ToMKLDNNDataType(inputs[0]->type());
std::vector<memory::desc> srcs_md;
memory::desc dst_md;
MKLDNNMemoryFormat dst_fmt;

srcs_md.reserve(inputs.size());

// if stack is not done on last(non existing) axis, then we can optimize
// concat primitive by not adding additional dimension, since it causes
// wrong output format deduction and suboptimal performance as a result
if (stack_axis != ndims) {
for (size_t i = 0; i < inputs.size(); ++i) {
srcs_md.emplace_back(memory::desc(input_dims, dt, inputs[i]->format()));
}

input_dims[stack_axis] *= inputs.size();
dst_md = memory::desc(input_dims, dt, MKLDNNMemoryFormat::any);
} else {
auto extended_input_dims = framework::vectorize<int64_t>(output->dims());
extended_input_dims[stack_axis] = 1;

for (size_t i = 0; i < inputs.size(); ++i) {
srcs_md.emplace_back(memory::desc(input_dims, dt, inputs[i]->format())
.reshape(extended_input_dims));
}

// concat primitive choses suboptimal format tag because it cannot
// distinguish between f.e. abcd and abdc if last dim is equal to 1 so
// enforcing is needed for better performance
dst_fmt = platform::GetPlainMKLDNNFormat(extended_input_dims.size());
dst_md = memory::desc(framework::vectorize(output->dims()), dt, dst_fmt);
}

this->AcquireForwardPrimitiveDescriptor(dst_md, stack_axis, srcs_md);
}

// concat oneDNN prim is not having .desc attribute so we cannot use default
// AcquireForwardPrimitiveDescriptor
void AcquireForwardPrimitiveDescriptor(
const memory::desc& dst_md, const int stack_axis,
const std::vector<memory::desc>& srcs_md) {
this->fwd_pd_.reset(new dnnl::concat::primitive_desc(
dst_md, stack_axis, srcs_md, this->engine_));
}

std::shared_ptr<mkldnn::memory> AcquireSrcMemory(const Tensor& input, int i) {
const T* input_data = input.data<T>();
return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src_desc(i),
to_void_cast<T>(input_data));
}
};

template <typename T>
class StackMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();

auto multi_input = ctx.MultiInput<Tensor>("X");

Tensor* output = ctx.Output<Tensor>("Y");

StackMKLDNNHandler<T> handler(ctx, mkldnn_engine, multi_input, output);

std::vector<std::shared_ptr<memory>> srcs;
srcs.reserve(multi_input.size());

auto dst_mem = handler.AcquireDstMemory(output);
auto concat_p = handler.AcquireForwardPrimitive();

auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
std::unordered_map<int, memory> args;
for (size_t i = 0; i < multi_input.size(); ++i) {
srcs.push_back(handler.AcquireSrcMemory(*(multi_input[i]), i));
args.insert({MKLDNN_ARG_MULTIPLE_SRC + i, *(srcs.at(i))});
}
args.insert({MKLDNN_ARG_DST, *dst_mem});

concat_p->execute(astream, args);
astream.wait();

output->set_layout(DataLayout::kMKLDNN);
output->set_format(platform::GetMKLDNNFormat(
dst_mem->get_desc().reshape(framework::vectorize(output->dims()))));
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(stack, MKLDNN, ::paddle::platform::CPUPlace,
ops::StackMKLDNNOpKernel<float>);
20 changes: 20 additions & 0 deletions paddle/fluid/operators/stack_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,21 @@ class StackOp : public framework::OperatorWithKernel {
vec.insert(vec.begin() + axis, input_dims.size());
ctx->SetOutputDim("Y", framework::make_ddim(vec));
}

framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
auto input_data_type =
framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};

class StackOpMaker : public framework::OpProtoAndCheckerMaker {
Expand All @@ -81,6 +96,11 @@ class StackOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<int>("axis",
"The axis along which all of the Inputs(X) should be stacked.")
.SetDefault(0);
AddAttr<bool>(
"use_mkldnn",
"(bool, default false) Indicates if MKL-DNN kernel will be used")
.SetDefault(false)
.AsExtra();
AddComment(R"DOC(
Stack Operator.
Stack all of the Inputs(X) into one tensor along Attr(axis). The dims of all Inputs(X) must be the same.
Expand Down
37 changes: 37 additions & 0 deletions paddle/fluid/platform/mkldnn_helper.h
Original file line number Diff line number Diff line change
Expand Up @@ -333,6 +333,43 @@ inline mkldnn::memory::format_tag GetMKLDNNFormat(const mkldnn::memory memory) {
return GetMKLDNNFormat(mem_desc);
}

inline mkldnn::memory::format_tag GetPlainMKLDNNFormat(int tensor_rank) {
switch (tensor_rank) {
case 1:
return mkldnn::memory::format_tag::a;
break;
case 2:
return mkldnn::memory::format_tag::ab;
break;
case 3:
return mkldnn::memory::format_tag::abc;
break;
case 4:
return mkldnn::memory::format_tag::abcd;
break;
case 5:
return mkldnn::memory::format_tag::abcde;
break;
case 6:
return mkldnn::memory::format_tag::abcdef;
break;
case 7:
return mkldnn::memory::format_tag::abcdefg;
break;
case 8:
return mkldnn::memory::format_tag::abcdefgh;
break;
case 9:
return mkldnn::memory::format_tag::abcdefghi;
break;
default:
PADDLE_THROW(platform::errors::Unimplemented(
"Paddle support tensors with rank in range <1, 9>, but received "
"tensor with rank: %d",
tensor_rank));
}
}

inline MKLDNNMemoryFormat MKLDNNFormatForSize(size_t dims_size,
MKLDNNMemoryFormat data_format) {
if (dims_size == 1) {
Expand Down
115 changes: 115 additions & 0 deletions python/paddle/fluid/tests/unittests/mkldnn/test_stack_mkldnn_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool, skip_check_grad_ci
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core


@OpTestTool.skip_if_not_cpu()
class TestStack2DOneDNNOp(OpTest):
def initDefaultParameters(self):
self.num_inputs = 4
self.input_dim = (2, 2)
self.axis = 1
self.dtype = np.float32

def initParameters(self):
pass

def getInputNames(self):
input_names = []
for i in range(self.num_inputs):
input_names.append('x{}'.format(i))
return input_names

def setUp(self):
self.initDefaultParameters()
self.initParameters()
self.op_type = 'stack'
self.op_inputs = []

for i in range(self.num_inputs):
self.op_inputs.append(
np.random.random(size=self.input_dim).astype(np.float32))

input_list = []
input_names = self.getInputNames()
for i in range(self.num_inputs):
input_list.append((input_names[i], self.op_inputs[i]))

self.inputs = {'X': input_list}
self.outputs = {'Y': np.stack(self.op_inputs, axis=self.axis)}
self.attrs = {'axis': self.axis, 'use_mkldnn': True}

def test_check_output(self):
self.check_output_with_place(core.CPUPlace())

# JUST FOR CI TO PASS, GRAD IS NOT IMPLEMENTED YET
def test_check_grad(self):
pass


class TestStack1DOneDNNOp(TestStack2DOneDNNOp):
def initParameters(self):
self.input_dim = (100)
self.axis = 0


class TestStack1DAxis1OneDNNOp(TestStack2DOneDNNOp):
def initParameters(self):
self.input_dim = (100)
self.axis = 1


class TestStack2DAxisLastOneDNNOp(TestStack2DOneDNNOp):
def initParameters(self):
self.input_dim = (13, 24)
self.num_inputs = 5
self.axis = -1


class TestStack3DAxisNegativeOneDNNOp(TestStack2DOneDNNOp):
def initParameters(self):
self.input_dim = (10, 128, 128)
self.axis = -2


class TestStack3DOneDNNOp(TestStack2DOneDNNOp):
def initParameters(self):
self.input_dim = (10, 128, 128)
self.num_inputs = 3
self.axis = 1


class TestStack4DOneDNNOp(TestStack2DOneDNNOp):
def initParameters(self):
self.input_dim = (2, 2, 2, 2)
self.num_inputs = 3
self.axis = 4


class TestStack5DOneDNNOp(TestStack2DOneDNNOp):
def initParameters(self):
self.input_dim = (2, 3, 4, 5, 6)
self.num_inputs = 6
self.axis = 0


if __name__ == "__main__":
paddle.enable_static()
unittest.main()
6 changes: 6 additions & 0 deletions python/paddle/fluid/tests/unittests/op_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -1832,3 +1832,9 @@ def skip_if_not_cpu_bf16(cls):
not (isinstance(_current_expected_place(), core.CPUPlace) and
core.supports_bfloat16()),
"Place does not support BF16 evaluation")

@classmethod
def skip_if_not_cpu(cls):
return OpTestTool.skip_if(
not isinstance(_current_expected_place(), core.CPUPlace),
"OneDNN supports only CPU for now")