-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
split_op for npu #34699
Merged
Merged
split_op for npu #34699
Changes from 3 commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include <memory> | ||
#include <string> | ||
|
||
#include "paddle/fluid/operators/npu_op_runner.h" | ||
#include "paddle/fluid/operators/split_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
|
||
template <typename T> | ||
class SplitNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* in = ctx.Input<framework::Tensor>("X"); | ||
auto outs = ctx.MultiOutput<framework::Tensor>("Out"); | ||
int num = ctx.Attr<int>("num"); | ||
std::vector<int> sections = ctx.Attr<std::vector<int>>("sections"); | ||
int axis = ctx.Attr<int>("axis"); | ||
|
||
if (ctx.HasInput("AxisTensor")) { | ||
// TODO(liupeng51): | ||
PADDLE_THROW(platform::errors::Unimplemented( | ||
"The AxisTensor is not supported on NPU now.")); | ||
} | ||
if (ctx.HasInput("SectionsTensorList")) { | ||
// TODO(liupeng51): | ||
PADDLE_THROW(platform::errors::Unimplemented( | ||
"The SectionsTensorList is not supported on NPU now.")); | ||
} | ||
|
||
PADDLE_ENFORCE_EQ( | ||
axis >= 0 && axis < in->dims().size(), true, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Axis could be negative. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. done |
||
platform::errors::InvalidArgument( | ||
"axis(%d) must satisfy 0 <= axis < input.dims(%d) and ", axis, | ||
static_cast<int>(in->dims().size()))); | ||
|
||
std::vector<Tensor> outputs; | ||
auto place = ctx.GetPlace(); | ||
for (size_t j = 0; j < outs.size(); ++j) { | ||
outs[j]->mutable_data<T>(ctx.GetPlace()); | ||
outputs.push_back(*outs[j]); | ||
} | ||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
NpuOpRunner runner; | ||
if (sections.size() == 0) { | ||
framework::NPUAttributeMap attr_input = {{"num_split", num}, | ||
{"split_dim", axis}}; | ||
runner.SetType("SplitD").AddInputs({*in}).AddOutputs(outputs).AddAttrs( | ||
attr_input); | ||
} else { | ||
framework::NPUAttributeMap attr_input = { | ||
{"size_splits", sections}, | ||
{"split_dim", axis}, | ||
{"num_split", static_cast<int32_t>(sections.size())}}; | ||
runner.SetType("SplitVD").AddInput(*in).AddOutputs(outputs).AddAttrs( | ||
attr_input); | ||
} | ||
|
||
runner.Run(stream); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
namespace plat = paddle::platform; | ||
|
||
REGISTER_OP_NPU_KERNEL(split, ops::SplitNPUKernel<float>, | ||
ops::SplitNPUKernel<int>, | ||
ops::SplitNPUKernel<plat::float16>); |
158 changes: 158 additions & 0 deletions
158
python/paddle/fluid/tests/unittests/npu/test_split_op_npu.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
|
||
import numpy as np | ||
import unittest | ||
import sys | ||
sys.path.append("..") | ||
from op_test import OpTest | ||
import paddle | ||
import paddle.fluid as fluid | ||
import paddle.fluid.core as core | ||
|
||
paddle.enable_static() | ||
SEED = 2021 | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestCase1(OpTest): | ||
def setUp(self): | ||
self.set_npu() | ||
self.set_example() | ||
self.op_type = "split" | ||
self.place = paddle.NPUPlace(0) | ||
ipt = self.x.astype(self.dtype) | ||
axis = self.axis if isinstance(self.axis, int) else int(self.axis[0]) | ||
tmp_outs = np.split( | ||
ipt, axis=axis, indices_or_sections=self.num_or_sections) | ||
tmp_outs = [o.astype(self.dtype) for o in tmp_outs] | ||
self.outputs = {'Out': []} | ||
self.outs = [] | ||
for i, o in enumerate(tmp_outs): | ||
self.outputs["Out"].append((str(i), o)) | ||
self.outs.append(str(i)) | ||
|
||
self.attrs = {"axis": self.axis, "num": self.num_or_sections} | ||
self.inputs = {} | ||
self.inputs.update({'X': ipt.astype(self.dtype)}) | ||
|
||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
self.__class__.op_type = "split" | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place) | ||
|
||
def test_check_grad(self): | ||
self.check_grad_with_place(self.place, ["X"], self.outs) | ||
|
||
def set_example(self): | ||
self.dtype = "float32" | ||
self.x = np.random.random((2, 4, 6)) | ||
self.axis = 1 | ||
self.num_or_sections = 2 | ||
|
||
|
||
class TestCase2(TestCase1): | ||
def set_example(self): | ||
self.dtype = "float32" | ||
self.x = np.random.random((20, 4, 50)) | ||
self.axis = 0 | ||
self.num_or_sections = 4 | ||
|
||
|
||
class TestCase4(TestCase1): | ||
def set_example(self): | ||
self.dtype = "float16" | ||
self.x = np.random.random((4, 50, 20)) | ||
self.axis = 2 | ||
self.num_or_sections = 4 | ||
|
||
|
||
# Test Sections | ||
class TestCase5(TestCase1): | ||
def set_example(self): | ||
super().set_example() | ||
self.x = np.random.random((2, 10, 4)) | ||
self.axis = 1 | ||
self.num_or_sections = [2, 4, 8] | ||
|
||
def setUp(self): | ||
super().setUp() | ||
self.attrs.update({"sections": [2, 2, 4, 2], "num": 0}) | ||
|
||
|
||
class API_TestSplit(unittest.TestCase): | ||
def test_out(self): | ||
with fluid.program_guard(fluid.Program(), fluid.Program()): | ||
data = fluid.layers.data('data', shape=[-1, 10], dtype='float32') | ||
x0, x1 = paddle.split(data, num_or_sections=(3, 7), axis=1) | ||
place = fluid.NPUPlace(0) | ||
exe = fluid.Executor(place) | ||
input1 = np.random.random([1, 10]).astype('float32') | ||
r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1]) | ||
ex_x0, ex_x1 = np.split(input1, (3, ), axis=1) | ||
self.assertTrue(np.allclose(ex_x0, r0)) | ||
self.assertTrue(np.allclose(ex_x1, r1)) | ||
|
||
|
||
class API_TestSplit2(unittest.TestCase): | ||
def test_out(self): | ||
with fluid.program_guard(fluid.Program(), fluid.Program()): | ||
data = fluid.layers.data('data', shape=[-1, 10], dtype='float32') | ||
x0, x1 = paddle.split(data, num_or_sections=2, axis=1) | ||
place = fluid.NPUPlace(0) | ||
exe = fluid.Executor(place) | ||
input1 = np.random.random([1, 10]).astype('float32') | ||
r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1]) | ||
ex_x0, ex_x1 = np.split(input1, 2, axis=1) | ||
self.assertTrue(np.allclose(ex_x0, r0)) | ||
self.assertTrue(np.allclose(ex_x1, r1)) | ||
|
||
|
||
class API_TestDygraphSplit(unittest.TestCase): | ||
def test_out1(self): | ||
with fluid.dygraph.guard(paddle.NPUPlace(0)): | ||
input_1 = np.random.random([4, 6, 6]).astype("int32") | ||
# input is a variable which shape is [4, 6, 6] | ||
input = fluid.dygraph.to_variable(input_1) | ||
x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1) | ||
x0_out = x0.numpy() | ||
x1_out = x1.numpy() | ||
x2_out = x2.numpy() | ||
ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1) | ||
self.assertTrue(np.allclose(ex_x0, x0_out)) | ||
self.assertTrue(np.allclose(ex_x1, x1_out)) | ||
self.assertTrue(np.allclose(ex_x2, x2_out)) | ||
|
||
def test_out2(self): | ||
with fluid.dygraph.guard(paddle.NPUPlace(0)): | ||
input_1 = np.random.random([4, 6, 6]).astype("int32") | ||
# input is a variable which shape is [4, 6, 6] | ||
input = fluid.dygraph.to_variable(input_1) | ||
x0, x1, x2 = paddle.split(input, num_or_sections=[1, 2, 3], axis=1) | ||
x0_out = x0.numpy() | ||
x1_out = x1.numpy() | ||
x2_out = x2.numpy() | ||
ex_x0, ex_x1, ex_x2 = np.split(input_1, (1, 3), axis=1) | ||
self.assertTrue(np.allclose(ex_x0, x0_out)) | ||
self.assertTrue(np.allclose(ex_x1, x1_out)) | ||
self.assertTrue(np.allclose(ex_x2, x2_out)) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Plz check the copyright format.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
done