Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[NPU] support LoDTensor for fill_constant_batch_size_like NPU OP #34563

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 21 additions & 13 deletions paddle/fluid/operators/fill_constant_batch_size_like_op_npu.cc
Original file line number Diff line number Diff line change
Expand Up @@ -32,29 +32,37 @@ class FillConstantBatchSizeLikeOpNPUKernel : public framework::OpKernel<T> {
auto force_cpu = ctx.Attr<bool>("force_cpu");

auto *out = ctx.Output<Tensor>("Out");
auto *input = ctx.Input<Tensor>("Input");
if (&ctx.Attr<int>("input_dim_idx") == 0) {
// set the correct batch size.
auto *in = ctx.Input<framework::LoDTensor>("Input");
if (in->lod().size() && ctx.Attr<int>("input_dim_idx") == 0) {
// set the correct batch size for the LoDTensor.
auto odims = out->dims();
int input_dim_idx = ctx.Attr<int>("input_dim_idx");
int output_dim_idx = ctx.Attr<int>("output_dim_idx");
odims[output_dim_idx] = input->dims()[input_dim_idx];
odims[output_dim_idx] = static_cast<int>(in->lod().back().size()) - 1;
out->mutable_data<T>(odims, ctx.GetPlace());
}

T value;
if (str_value.empty()) {
value = static_cast<T>(float_value);
} else {
std::stringstream convert_stream(str_value);
if (std::is_same<int64_t, T>::value) {
int64_t tmp_value;
convert_stream >> tmp_value;
value = static_cast<T>(tmp_value);
// handle NaN/Inf first, which cannot be read from stream.
if (str_value == "inf") {
value = static_cast<T>(std::numeric_limits<double>::infinity());
} else if (str_value == "-inf") {
value = static_cast<T>(-std::numeric_limits<double>::infinity());
} else if (str_value == "nan") {
value = static_cast<T>(std::numeric_limits<double>::quiet_NaN());
} else {
double tmp_value;
convert_stream >> tmp_value;
value = static_cast<T>(tmp_value);
std::stringstream convert_stream(str_value);
if (std::is_same<int64_t, T>::value) {
int64_t tmp_value;
convert_stream >> tmp_value;
value = static_cast<T>(tmp_value);
} else {
double tmp_value;
convert_stream >> tmp_value;
value = static_cast<T>(tmp_value);
}
}
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,22 @@ def init_value(self):
self.output_value = 4.5


class TestFillConstantBatchSizeLike4(TestFillConstantBatchSizeLike):
def init_value(self):
# str_value = 'inf'
self.value = 3.8
self.str_value = 'inf'
self.output_value = float('inf')


class TestFillConstantBatchSizeLike5(TestFillConstantBatchSizeLike):
def init_value(self):
# str_value = '-inf'
self.value = 3.8
self.str_value = '-inf'
self.output_value = -float('inf')


class TestFillConstantBatchSizeLike6(TestFillConstantBatchSizeLike):
def init_dtype(self):
self.dtype = core.VarDesc.VarType.FP16
Expand Down Expand Up @@ -130,5 +146,54 @@ def init_dim_idx(self):
self.output_dim_idx = 1


class TestFillConstantBatchSizeLikeLodTensor(TestFillConstantBatchSizeLike):
# test LodTensor
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "fill_constant_batch_size_like"
self.init_shape()
self.init_value()
self.init_dtype()
self.init_force_cpu()
self.init_dim_idx()

lod = [[3, 2, 5]]
self.inputs = {
'Input': (np.random.random(self.input_shape).astype("float32"), lod)
}
self.attrs = {
'shape': self.shape,
'value': self.value,
'str_value': self.str_value,
'dtype': self.dtype,
'force_cpu': self.force_cpu,
'input_dim_idx': self.input_dim_idx,
'output_dim_idx': self.output_dim_idx
}
self.outputs = {
'Out': np.full(self.output_shape, self.output_value,
self.output_dtype)
}

def init_shape(self):
self.input_shape = [10, 20]
self.shape = [123, 92]
self.output_shape = (3, 92)


class TestFillConstantBatchSizeLikeLodTensor2(
TestFillConstantBatchSizeLikeLodTensor):
# test LodTensor with 'input_dim_idx' != 0
def init_shape(self):
self.input_shape = [10, 20]
self.shape = [123, 92]
self.output_shape = (20, 92)

def init_dim_idx(self):
self.input_dim_idx = 1
self.output_dim_idx = 0


if __name__ == '__main__':
unittest.main()