Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 18 additions & 7 deletions python/paddle/fluid/tests/unittests/test_adamw_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,16 +98,27 @@ def test_adamw_lr_decay(self):
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_tensor(value)
linear = paddle.nn.Linear(13, 5)

lr = paddle.optimizer.lr.NoamDecay(d_model=0.01, warmup_steps=10)
wd = 0.1
adam = paddle.optimizer.AdamW(
learning_rate=paddle.optimizer.lr.NoamDecay(
d_model=512, warmup_steps=4000),
learning_rate=lr,
parameters=linear.parameters(),
apply_decay_param_fun=lambda name: True,
weight_decay=0.01)
out = linear(a)
out.backward()
adam.step()
adam.clear_gradients()
weight_decay=wd)

for _ in range(2):
out = linear(a)
out.backward()
lr_to_coeff = adam._lr_to_coeff
adam.step()

for i, value in enumerate(lr_to_coeff.values()):
self.assertAlmostEqual(value.numpy()[0], 1.0 - lr() * wd)
self.assertEqual(len(adam._lr_to_coeff), 0)

lr.step()
adam.clear_gradients()


if __name__ == "__main__":
Expand Down
12 changes: 11 additions & 1 deletion python/paddle/optimizer/adamw.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,10 @@ def _append_decoupled_weight_decay(self, block, param_and_grad):
[param, grad]), framework.name_scope('weight decay'):
self._params_name.add(param.name)

# If it has been calculated, the result will be reused
# If it has been calculated, the result will be reused.
# NOTE(wangxi): In dygraph mode, apply_gradient will be executed
# every step, so need clear _lr_to_coeff every step,
# we do this in _create_optimization_pass
decay_coeff = self._lr_to_coeff.get(learning_rate, None)
if decay_coeff is None:
decay_coeff = 1.0 - learning_rate * self._coeff
Expand All @@ -186,5 +189,12 @@ def _append_optimize_op(self, block, param_and_grad):
self._append_decoupled_weight_decay(block, param_and_grad)
return super(AdamW, self)._append_optimize_op(block, param_and_grad)

def _create_optimization_pass(self, parameters_and_grads):
optimize_ops = super(
AdamW, self)._create_optimization_pass(parameters_and_grads)
# In dygraph mode, clear _lr_to_coeff after applied gradient
self._lr_to_coeff = dict()
return optimize_ops

def __str__(self):
return " ".join(["Weight Decay, params:", ",".join(self._params_name)])