Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Lookahead and ModelAverage Optimizer #30004

Merged
merged 16 commits into from
Jan 6, 2021
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
test=develop, add unittest for modelaverage
  • Loading branch information
123malin committed Dec 28, 2020
commit 6ac590546ad7d44b489364dfd585e038365f5b30
204 changes: 204 additions & 0 deletions python/paddle/fluid/tests/unittests/test_modelaverage.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,204 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
from paddle.fluid import core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
import paddle
import paddle.nn as nn


class TestModelAverage(unittest.TestCase):
def test_model_average_static(self):
paddle.enable_static()
place = fluid.CPUPlace()
shape = [2, 3, 8, 8]
exe = fluid.Executor(place)
train_program = fluid.Program()
startup = fluid.Program()
test_program = fluid.Program()
with fluid.program_guard(train_program, startup):
with fluid.unique_name.guard():
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
test_program = train_program.clone()
optimizer = paddle.optimizer.Momentum(
learning_rate=0.2, momentum=0.1)

# build ModelAverage optimizer
model_average = paddle.optimizer.ModelAverage(
optimizer,
0.15,
min_average_window=2,
max_average_window=10)

model_average.minimize(loss)

exe.run(startup)
for i in range(10):
x = np.random.random(size=(10, 1)).astype('float32')
latest_b, sum_1, sum_2, sum_3, num_accumulates, old_num_accumulates, num_updates = exe.run(
program=train_program,
feed={'X': x},
fetch_list=[
'fc_0.b_0', 'fc_0.b_0_sum_1_0', 'fc_0.b_0_sum_2_0',
'fc_0.b_0_sum_3_0', 'fc_0.b_0_num_accumulates_0',
'fc_0.b_0_old_num_accumulates_0', 'fc_0.b_0_num_updates_0'
])
self.assertTrue(
np.equal(
sum_1, np.zeros(
shape=[10], dtype='float32')).all())
self.assertTrue(
np.equal(
sum_2, np.zeros(
shape=[10], dtype='float32')).all())
self.assertTrue(
np.equal(
num_accumulates, np.array(
[0], dtype='int64')).all())
self.assertTrue(
np.equal(
old_num_accumulates, np.array(
[2], dtype='int64')).all())
self.assertTrue(
np.equal(
num_updates, np.array(
[10], dtype='int64')).all())

average_b = (sum_1 + sum_2 + sum_3) / (
num_accumulates + old_num_accumulates)
# apply ModelAverage
with model_average.apply(exe):
x = np.random.random(size=(10, 1)).astype('float32')
outs, b = exe.run(program=test_program,
feed={'X': x},
fetch_list=[loss.name, 'fc_0.b_0'])
self.assertTrue(np.equal(average_b, b).all())

x = np.random.random(size=(10, 1)).astype('float32')
outs, b = exe.run(program=test_program,
feed={'X': x},
fetch_list=[loss.name, 'fc_0.b_0'])
self.assertTrue(np.equal(latest_b, b).all())

def test_model_average_dygraph(self):
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4

IMAGE_SIZE = 784
CLASS_NUM = 10

# define a random dataset
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples

def __getitem__(self, idx):
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1,
(1, )).astype('int64')
return image, label

def __len__(self):
return self.num_samples

class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
self.bias = self._linear.bias

@paddle.jit.to_static
def forward(self, x):
return self._linear(x)

def train(layer, loader, loss_fn, opt):
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
opt.step()
opt.clear_grad()
# print("Train Epoch {} batch {}: loss = {}, bias = {}".format(
# epoch_id, batch_id, np.mean(loss.numpy()), layer.bias.numpy()))
sum_1 = opt._get_accumulator('sum_1', layer.bias)
sum_2 = opt._get_accumulator('sum_2', layer.bias)
sum_3 = opt._get_accumulator('sum_3', layer.bias)
num_accumulates = opt._get_accumulator('num_accumulates',
layer.bias)
old_num_accumulates = opt._get_accumulator('old_num_accumulates',
layer.bias)
num_updates = opt._get_accumulator('num_updates', layer.bias)

return ((sum_1 + sum_2 + sum_3) /
(num_accumulates + old_num_accumulates)).numpy()

def evaluate(layer, loader, loss_fn, check_param):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
self.assertTrue(np.equal(layer.bias.numpy(), check_param).all())
# print("Evaluate batch {}: loss = {}, bias = {}".format(
# batch_id, np.mean(loss.numpy()), layer.bias.numpy()))

# create network

layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
optimizer = paddle.optimizer.Momentum(
learning_rate=0.2, momentum=0.1, parameters=layer.parameters())
# build ModelAverage optimizer
model_average = paddle.optimizer.ModelAverage(
optimizer, 0.15, min_average_window=2, max_average_window=10)

# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(
dataset,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
eval_loader = paddle.io.DataLoader(
dataset,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=1)
# train
check_param = train(layer, loader, loss_fn, model_average)
# print(check_param)
with model_average.apply(need_restore=False):
evaluate(layer, eval_loader, loss_fn, check_param)

check_param = (model_average._get_accumulator('restore',
layer.bias)).numpy()
# print(check_param)
# print("\nEvaluate With Restored Paramters")
model_average.restore()
evaluate(layer, eval_loader, loss_fn, check_param)


if __name__ == "__main__":
unittest.main()