Skip to content

Commit

Permalink
add book02.recognize_digits mlp train test
Browse files Browse the repository at this point in the history
  • Loading branch information
QiJune committed Oct 20, 2017
1 parent 37bfd03 commit 8278d97
Show file tree
Hide file tree
Showing 2 changed files with 84 additions and 1 deletion.
2 changes: 1 addition & 1 deletion python/paddle/v2/framework/tests/test_cross_entropy_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ def setUp(self):

self.inputs = {"X": X, "Label": label}
self.outputs = {"Y": cross_entropy}
self.attrs = {"softLabel": False}
self.attrs = {"soft_label": False}

def test_check_output(self):
self.check_output()
Expand Down
83 changes: 83 additions & 0 deletions python/paddle/v2/framework/tests/test_recognize_digits_mlp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
import paddle.v2 as paddle
import paddle.v2.framework.layers as layers
import paddle.v2.framework.core as core
import paddle.v2.framework.optimizer as optimizer

from paddle.v2.framework.framework import Program, g_program
from paddle.v2.framework.executor import Executor

import numpy as np

init_program = Program()
program = Program()
image = layers.data(
name='x',
shape=[784],
data_type='float32',
program=program,
init_program=init_program)

hidden1 = layers.fc(input=image,
size=128,
act='relu',
program=program,
init_program=init_program)
hidden2 = layers.fc(input=hidden1,
size=64,
act='relu',
program=program,
init_program=init_program)

predict = layers.fc(input=hidden2,
size=10,
act='softmax',
program=program,
init_program=init_program)

label = layers.data(
name='y',
shape=[1],
data_type='int32',
program=program,
init_program=init_program)

cost = layers.cross_entropy(
input=predict, label=label, program=program, init_program=init_program)
avg_cost = layers.mean(x=cost, program=program, init_program=init_program)

sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
opts = sgd_optimizer.minimize(avg_cost)

BATCH_SIZE = 128

train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192),
batch_size=BATCH_SIZE)

place = core.CPUPlace()
exe = Executor(place)

exe.run(init_program, feed={}, fetch_list=[])

PASS_NUM = 100
for pass_id in range(PASS_NUM):
for data in train_reader():
x_data = np.array(map(lambda x: x[0], data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int32")
y_data = np.expand_dims(y_data, axis=1)

tensor_x = core.LoDTensor()
tensor_x.set(x_data, place)

tensor_y = core.LoDTensor()
tensor_y.set(y_data, place)

outs = exe.run(program,
feed={'x': tensor_x,
'y': tensor_y},
fetch_list=[avg_cost])
out = np.array(outs[0])
if out[0] < 5.0:
exit(0) # if avg cost less than 5.0, we think our code is good.
exit(1)

0 comments on commit 8278d97

Please sign in to comment.