-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
【Hackathon 5th No.52】 为 Paddle 新增 unsqueeze 的 spmd 切分推导规则 -part (#58296)
* add unsqueeze spmd rules * fix bugs * fix bugs * modify the code based on the first review * fix bugs
- Loading branch information
1 parent
b0db77e
commit 67a6a31
Showing
6 changed files
with
589 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights resized. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/phi/infermeta/spmd_rules/unsqueeze.h" | ||
#include <algorithm> | ||
#include <numeric> | ||
|
||
#include "glog/logging.h" | ||
|
||
#include "paddle/phi/core/distributed/auto_parallel/dist_attr.h" | ||
#include "paddle/phi/core/distributed/auto_parallel/inferspmd_utils.h" | ||
#include "paddle/phi/core/distributed/auto_parallel/utils.h" | ||
#include "paddle/phi/infermeta/spmd_rules/dim_trans.h" | ||
#include "paddle/phi/infermeta/spmd_rules/utils.h" | ||
|
||
namespace phi { | ||
namespace distributed { | ||
|
||
using phi::distributed::auto_parallel::str_join; | ||
|
||
std::vector<DimTrans*> MakeUnsqueezeDimTrans( | ||
const std::vector<int64_t>& x_shape, | ||
std::vector<int64_t>* out_shape, | ||
const std::vector<int64_t>& axis) { | ||
int64_t n = static_cast<int64_t>(x_shape.size() + axis.size()); | ||
std::vector<DimTrans*> ret; | ||
ret.resize(n); | ||
out_shape->resize(n); | ||
fill(ret.begin(), ret.end(), new Singleton()); | ||
fill(out_shape->begin(), out_shape->end(), 1); | ||
|
||
for (int64_t i = 0, j = 0; i < n; i++) { | ||
auto it = find(axis.begin(), axis.end(), i); | ||
|
||
if (it == axis.end()) { | ||
if (x_shape[j] != 1) { | ||
ret[i] = new InputDim(j); | ||
(*out_shape)[i] = x_shape[j]; | ||
} | ||
|
||
j++; | ||
} | ||
} | ||
|
||
return ret; | ||
} | ||
|
||
std::vector<DimTrans*> MakeUnsqueezeDimTransReverse( | ||
const std::vector<int64_t>& out_shape, | ||
const std::vector<int64_t>& axis, | ||
const int& x_ndim, | ||
const int& out_ndim) { | ||
std::vector<DimTrans*> ret; | ||
ret.resize(x_ndim); | ||
fill(ret.begin(), ret.end(), new Singleton()); | ||
|
||
for (int64_t i = 0, j = 0; i < out_ndim; i++) { | ||
auto it = find(axis.begin(), axis.end(), i); | ||
|
||
if (it == axis.end()) { | ||
if (out_shape[i] != 1) { | ||
ret[j] = new InputDim(i); | ||
} | ||
|
||
j++; | ||
} | ||
} | ||
|
||
return ret; | ||
} | ||
|
||
SpmdInfo UnsqueezeInferSpmd(const DistMetaTensor& x, | ||
const std::vector<int64_t>& axis) { | ||
// Step0: Verify input args based on unsqueeze logic | ||
auto x_shape = phi::vectorize(x.dims()); | ||
int x_ndim = x_shape.size(); | ||
auto x_dist_attr_src = x.dist_attr(); | ||
std::vector<int64_t> x_dims_mapping = x_dist_attr_src.dims_mapping(); | ||
PADDLE_ENFORCE_EQ( | ||
x_ndim, | ||
x_dims_mapping.size(), | ||
phi::errors::InvalidArgument("The Tensor X's rank [%d] and X's " | ||
"dims_mapping size [%d] are not matched.", | ||
x_ndim, | ||
x_dims_mapping.size())); | ||
|
||
// Step1: Build the transformation from | ||
// the original shape to the target shape | ||
|
||
std::vector<int64_t> out_shape; | ||
std::vector<int64_t> axis_copy(axis); | ||
|
||
for (int64_t i = 0; i < static_cast<int64_t>(axis_copy.size()); i++) { | ||
if (axis_copy[i] < 0) { | ||
axis_copy[i] += x_ndim + 1; | ||
} | ||
} | ||
|
||
std::vector<DimTrans*> trans = | ||
MakeUnsqueezeDimTrans(x_shape, &out_shape, axis_copy); | ||
|
||
// Step2: Infer the dims mapping of input (if reshard is | ||
// needed) and output from the dimension transformation. | ||
std::vector<std::vector<int64_t>> dims_mapping_vec = | ||
InferFromDimTrans(x, trans); | ||
|
||
// Step3: Update the dist attributes of input | ||
// and output with the inferred dims mapping. | ||
TensorDistAttr x_dist_attr_dst(x_dist_attr_src); | ||
x_dist_attr_dst.set_dims_mapping(dims_mapping_vec[0]); | ||
TensorDistAttr out_dist_attr(x_dist_attr_src); | ||
out_dist_attr.set_dims_mapping(dims_mapping_vec[1]); | ||
|
||
VLOG(4) << "UnsqueezeInferSpmd: X shape: [" << str_join(x_shape) | ||
<< "] Out shape: [" << str_join(out_shape) << "]"; | ||
VLOG(4) << "Transformation from input to output:"; | ||
for (int64_t i = 0, n = static_cast<int64_t>(trans.size()); i < n; i++) { | ||
DimTrans* t = trans[i]; | ||
VLOG(4) << "\tOut axis[" << i << "]: " << t->to_string(); | ||
} | ||
VLOG(4) << "X dims_mapping_src: [" << str_join(x_dims_mapping) | ||
<< "] dims_mapping_dst: [" << str_join(dims_mapping_vec[0]) | ||
<< "]\n Out dims_mapping: [" << str_join(dims_mapping_vec[1]) | ||
<< "]\n\n"; | ||
|
||
CleanUp(); | ||
|
||
return {{x_dist_attr_dst}, {out_dist_attr}}; | ||
} | ||
|
||
SpmdInfo UnsqueezeInferSpmdReverse(const DistMetaTensor& x, | ||
const DistMetaTensor& out, | ||
const std::vector<int64_t>& axis) { | ||
// Step0: Verify input args based on unsqueeze logic | ||
auto x_shape = phi::vectorize(x.dims()); | ||
int x_ndim = x_shape.size(); | ||
auto out_shape = phi::vectorize(out.dims()); | ||
int out_ndim = out_shape.size(); | ||
auto out_dist_attr_src = out.dist_attr(); | ||
std::vector<int64_t> out_dims_mapping = out_dist_attr_src.dims_mapping(); | ||
PADDLE_ENFORCE_EQ( | ||
out_ndim, | ||
out_dims_mapping.size(), | ||
phi::errors::InvalidArgument("The Tensor Out's rank [%d] and Out's " | ||
"dims_mapping size [%d] are not matched.", | ||
out_ndim, | ||
out_dims_mapping.size())); | ||
|
||
// Step1: Build the transformation from the output shape | ||
// to original shape. This function infers the dims mapping | ||
// from output to input, we first get the transformation | ||
// from output to input so that we can infer the dims mapping | ||
// with the map from output axes to input axes. | ||
|
||
std::vector<int64_t> axis_copy(axis); | ||
|
||
for (int64_t i = 0; i < static_cast<int64_t>(axis_copy.size()); i++) { | ||
if (axis_copy[i] < 0) { | ||
axis_copy[i] += x_ndim + 1; | ||
} | ||
} | ||
|
||
std::vector<DimTrans*> trans = | ||
MakeUnsqueezeDimTransReverse(out_shape, axis_copy, x_ndim, out_ndim); | ||
|
||
// Step2: Infer the dims mapping of input with | ||
// output's dims_mapping and the transformation. | ||
std::vector<std::vector<int64_t>> dims_mapping_vec = | ||
InferFromDimTrans(out, trans); | ||
|
||
// Step3: Update the dist attributes of input | ||
// and output with the inferred dims mapping | ||
TensorDistAttr out_dist_attr_dst(out_dist_attr_src); | ||
out_dist_attr_dst.set_dims_mapping(dims_mapping_vec[0]); | ||
TensorDistAttr x_dist_attr(x.dist_attr()); | ||
x_dist_attr.set_dims_mapping(dims_mapping_vec[1]); | ||
|
||
VLOG(4) << "UnsqueezeInferSpmdReverse: Out shape: [" << str_join(out_shape) | ||
<< "] X shape: [" << str_join(x_shape) << "]"; | ||
VLOG(4) << "Transformation from output to input:"; | ||
for (int64_t i = 0, n = trans.size(); i < n; i++) { | ||
DimTrans* t = trans[i]; | ||
VLOG(4) << "\tX axis[" << i << "]: " << t->to_string(); | ||
} | ||
VLOG(4) << "Out dims_mapping_src: [" << str_join(out_dims_mapping) << "] " | ||
<< "dims_mapping_dst: [" << str_join(dims_mapping_vec[0]) << "]"; | ||
VLOG(4) << "X dims_mapping: [" << str_join(dims_mapping_vec[1]) << "]\n\n"; | ||
|
||
CleanUp(); | ||
|
||
return {{x_dist_attr}, {out_dist_attr_dst}}; | ||
} | ||
|
||
} // namespace distributed | ||
} // namespace phi |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include <vector> | ||
|
||
#include "paddle/phi/core/distributed/auto_parallel/dist_meta_tensor.h" | ||
#include "paddle/phi/core/distributed/type_defs.h" | ||
|
||
namespace phi { | ||
namespace distributed { | ||
|
||
SpmdInfo UnsqueezeInferSpmd(const DistMetaTensor& x, | ||
const std::vector<int64_t>& axis); | ||
|
||
SpmdInfo UnsqueezeInferSpmdReverse(const DistMetaTensor& x, | ||
const DistMetaTensor& out, | ||
const std::vector<int64_t>& axis); | ||
} // namespace distributed | ||
} // namespace phi |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.