-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
… develop
- Loading branch information
Showing
13 changed files
with
268 additions
and
402 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
# Benchmark | ||
|
||
Machine: | ||
|
||
- Server | ||
- Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket | ||
- Laptop | ||
- DELL XPS15-9560-R1745: i7-7700HQ 8G 256GSSD | ||
- i5 MacBook Pro (Retina, 13-inch, Early 2015) | ||
- Desktop | ||
- i7-6700k | ||
|
||
System: CentOS release 6.3 (Final), Docker 1.12.1. | ||
|
||
PaddlePaddle: paddlepaddle/paddle:latest (TODO: will rerun after 0.11.0) | ||
|
||
- MKL-DNN tag v0.10 | ||
- MKLML 2018.0.20170720 | ||
- OpenBLAS v0.2.20 | ||
|
||
On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively. | ||
|
||
## Benchmark Model | ||
|
||
### Server | ||
Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148M CPU @ 2.40GHz | ||
|
||
Input image size - 3 * 224 * 224, Time: images/second | ||
|
||
- VGG-19 | ||
|
||
| BatchSize | 64 | 128 | 256 | | ||
|--------------|-------| -----| --------| | ||
| OpenBLAS | 7.82 | 8.62 | 10.34 | | ||
| MKLML | 11.02 | 12.86 | 15.33 | | ||
| MKL-DNN | 27.69 | 28.8 | 29.27 | | ||
|
||
|
||
chart on batch size 128 | ||
TBD | ||
|
||
- ResNet | ||
- GoogLeNet | ||
|
||
### Laptop | ||
TBD | ||
### Desktop | ||
TBD |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from paddle.trainer_config_helpers import * | ||
|
||
settings(batch_size=16) | ||
channels = get_config_arg("channels", int, 2) | ||
|
||
def two_conv(input, group_name): | ||
out1 = img_conv_layer(input=input, | ||
name=group_name+'_conv1_', | ||
filter_size=1, | ||
num_filters=channels, | ||
padding=0, | ||
shared_biases=True, | ||
act=ReluActivation()) | ||
|
||
out2 = img_conv_layer(input=input, | ||
name=group_name+'_conv2_', | ||
filter_size=3, | ||
num_filters=channels, | ||
padding=1, | ||
shared_biases=True, | ||
act=ReluActivation()) | ||
return out1, out2 | ||
|
||
def two_conv_bn(input, group_name): | ||
out1, out2 = two_conv(input, group_name) | ||
out1 = batch_norm_layer(input=out1, | ||
name=group_name+'_bn1_', | ||
use_global_stats=False, | ||
act=ReluActivation()) | ||
|
||
out2 = batch_norm_layer(input=out2, | ||
name=group_name+'_bn2_', | ||
use_global_stats=False, | ||
act=ReluActivation()) | ||
return out1, out2 | ||
|
||
def two_conv_pool(input, group_name): | ||
out1, out2 = two_conv(input, group_name) | ||
out1 = img_pool_layer(input=out1, | ||
name=group_name+'_pool1_', | ||
pool_size=3, | ||
stride=2, | ||
padding=0, | ||
pool_type=MaxPooling()) | ||
|
||
out2 = img_pool_layer(input=out2, | ||
name=group_name+'_pool2_', | ||
pool_size=5, | ||
stride=2, | ||
padding=1, | ||
pool_type=MaxPooling()) | ||
return out1, out2 | ||
|
||
def two_fc(input, group_name): | ||
out1 = fc_layer(input=input, | ||
name=group_name+'_fc1_', | ||
size=channels, | ||
bias_attr=False, | ||
act=LinearActivation()) | ||
|
||
out2 = fc_layer(input=input, | ||
name=group_name+'_fc2_', | ||
size=channels, | ||
bias_attr=False, | ||
act=LinearActivation()) | ||
return out1, out2 | ||
|
||
data = data_layer(name ="input", size=channels*16*16) | ||
|
||
tmp = img_conv_layer(input=data, | ||
num_channels=channels, | ||
filter_size=3, | ||
num_filters=channels, | ||
padding=1, | ||
shared_biases=True, | ||
act=ReluActivation()) | ||
|
||
a1, a2 = two_conv(tmp, 'conv_branch') | ||
tmp = addto_layer(input=[a1, a2], | ||
act=ReluActivation(), | ||
bias_attr=False) | ||
|
||
tmp = img_pool_layer(input=tmp, | ||
pool_size=3, | ||
stride=2, | ||
padding=1, | ||
pool_type=AvgPooling()) | ||
|
||
b1, b2 = two_conv_pool(tmp, 'pool_branch') | ||
tmp = concat_layer(input=[b1, b2]) | ||
|
||
tmp = img_pool_layer(input=tmp, | ||
num_channels=channels*2, | ||
pool_size=3, | ||
stride=2, | ||
padding=1, | ||
pool_type=MaxPooling()) | ||
|
||
tmp = img_conv_layer(input=tmp, | ||
filter_size=3, | ||
num_filters=channels, | ||
padding=1, | ||
stride=2, | ||
shared_biases=True, | ||
act=LinearActivation(), | ||
bias_attr=False) | ||
|
||
tmp = batch_norm_layer(input=tmp, | ||
use_global_stats=False, | ||
act=ReluActivation()) | ||
|
||
c1, c2 = two_conv_bn(tmp, 'bn_branch') | ||
tmp = addto_layer(input=[c1, c2], | ||
act=ReluActivation(), | ||
bias_attr=False) | ||
|
||
tmp = fc_layer(input=tmp, size=channels, | ||
bias_attr=True, | ||
act=ReluActivation()) | ||
|
||
d1, d2 = two_fc(tmp, 'fc_branch') | ||
tmp = addto_layer(input=[d1, d2]) | ||
|
||
out = fc_layer(input=tmp, size=10, | ||
bias_attr=True, | ||
act=SoftmaxActivation()) | ||
|
||
outputs(out) |
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.