Skip to content

Commit

Permalink
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
Browse files Browse the repository at this point in the history
… develop
  • Loading branch information
zchen0211 committed Oct 20, 2017
2 parents 8e55736 + d2f3c8b commit 502e725
Show file tree
Hide file tree
Showing 75 changed files with 1,761 additions and 663 deletions.
2 changes: 1 addition & 1 deletion doc/design/block.md
Original file line number Diff line number Diff line change
Expand Up @@ -189,7 +189,7 @@ OpDesc {
inputs = {0} // the index of x in vars of BlockDesc above
outputs = {5, 3} // indices of act and hidden_out in vars of BlockDesc above
attrs {
"memories" : {1} // the index of h
"states" : {1} // the index of h
"step_net" : <above step net>
}
};
Expand Down
47 changes: 31 additions & 16 deletions paddle/capi/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -28,23 +28,37 @@ add_style_check_target(paddle_capi ${CAPI_SOURCES} ${CAPI_HEADER}

add_dependencies(paddle_capi paddle_proto)

# combine all paddle static libraries together, into libpaddle_capi_whole.a
# user should use PaddleCAPI as -lpaddle_capi_whole
set(PADDLE_CAPI_INFER_LIBS
paddle_utils
paddle_parameter
paddle_math
paddle_cuda
paddle_function
paddle_gserver
paddle_proto)

# TODO: paddle_capi_whole will be removed.
if(MOBILE_INFERENCE)
set(PADDLE_CAPI_INFER_LIBS
paddle_utils
paddle_parameter
paddle_math
paddle_cuda
paddle_function
paddle_gserver
paddle_proto)
else()
set(PADDLE_CAPI_INFER_LIBS
paddle_utils
paddle_parameter
paddle_math
paddle_cuda
paddle_function
paddle_gserver
paddle_proto
paddle_pserver
paddle_network)
endif()
cc_library(paddle_capi_whole DEPS paddle_capi ${PADDLE_CAPI_INFER_LIBS})

# No shared library for iOS
# Link the static library for inference
cc_library(paddle_capi_engine DEPS paddle_capi paddle_utils paddle_parameter paddle_math paddle_cuda paddle_proto)
cc_library(paddle_capi_layers DEPS paddle_function paddle_gserver)

# Link the shared library for inference
if(NOT IOS)
set(LINK_FLAGS " -Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/export.sym -Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/export.map")
# TODO: merge mkl into paddle_capi_shared
set(LINK_FLAGS "-Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/paddle_capi.map")
add_library(paddle_capi_shared SHARED ${CAPI_SOURCES})
set_target_properties(paddle_capi_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}")
target_include_directories(paddle_capi_shared PUBLIC ${CMAKE_CURRENT_BINARY_DIR})
Expand All @@ -53,9 +67,10 @@ endif()

# install library & headers.
install(FILES ${CAPI_HEADERS} DESTINATION include/paddle)
install(FILES paddle_capi.map DESTINATION include/paddle)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/config.h DESTINATION include/paddle)
if(ANDROID)
install(TARGETS paddle_capi_whole paddle_capi_shared
install(TARGETS paddle_capi_whole paddle_capi_engine paddle_capi_layers paddle_capi_shared
ARCHIVE DESTINATION lib/${ANDROID_ABI}
LIBRARY DESTINATION lib/${ANDROID_ABI})
execute_process(
Expand All @@ -80,7 +95,7 @@ if(ANDROID)
)"
)
else(ANDROID)
install(TARGETS paddle_capi_whole ARCHIVE DESTINATION lib)
install(TARGETS paddle_capi_whole paddle_capi_engine paddle_capi_layers ARCHIVE DESTINATION lib)
if(NOT IOS)
install(TARGETS paddle_capi_shared DESTINATION lib)
endif()
Expand Down
Empty file removed paddle/capi/export.sym
Empty file.
File renamed without changes.
16 changes: 14 additions & 2 deletions paddle/framework/backward.cc
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@

#include "paddle/framework/block_desc.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/dynamic_recurrent_op.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"

Expand Down Expand Up @@ -220,8 +221,7 @@ static std::unique_ptr<OperatorBase> BackwardRecursive(
// process recurrent gradient op as a special operator.
if (forwardOp.Type() == "recurrent") {
// NOTE clean up cycle call somewhere (RNN's stepnet constains itself),
// or
// this will result in infinite loop.
// or this will result in infinite loop.
const auto& rnnop =
*static_cast<const operators::RecurrentOp*>(&forwardOp);
auto rnn_grad_op =
Expand All @@ -231,6 +231,18 @@ static std::unique_ptr<OperatorBase> BackwardRecursive(
// create stepnet's gradient op
rnn_grad_op->set_stepnet(
BackwardRecursive(stepnet_op, no_grad_names, grad_to_var, uniq_id));
} else if (forwardOp.Type() == "dynamic_recurrent") {
// NOTE clean up cycle call somewhere (RNN's stepnet constains itself),
// or this will result in infinite loop.
const auto& rnnop =
*static_cast<const operators::DynamicRecurrentOp*>(&forwardOp);
auto rnn_grad_op =
static_cast<operators::DynamicRecurrentGradientOp*>(grad_op.get());
const auto& stepnet_op =
*static_cast<const OperatorBase*>(&rnnop.rnn.GetStepUnit());
// create stepnet's gradient op
rnn_grad_op->rnn.SetStepUnit(
BackwardRecursive(stepnet_op, no_grad_names, grad_to_var, uniq_id));
}

if (net->ops_.empty()) { // Current no aux op is added to network
Expand Down
2 changes: 2 additions & 0 deletions paddle/framework/data_type.h
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,8 @@ inline DataType ToDataType(std::type_index type) {
return DataType::FP64;
} else if (typeid(int).hash_code() == type.hash_code()) {
return DataType::INT32;
} else if (typeid(int64_t).hash_code() == type.hash_code()) {
return DataType::INT64;
} else {
PADDLE_THROW("Not supported");
}
Expand Down
3 changes: 1 addition & 2 deletions paddle/framework/executor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -84,8 +84,7 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id) {
op->Run(local_scope, *device);
}

// TODO(tonyyang-svail):
// - Destroy local_scope
scope->DeleteScope(&local_scope);
}

} // namespace framework
Expand Down
14 changes: 7 additions & 7 deletions paddle/framework/feed_fetch_method.h
Original file line number Diff line number Diff line change
Expand Up @@ -21,28 +21,28 @@ limitations under the License. */
namespace paddle {
namespace framework {

template <typename T>
void SetFeedVariable(const LoDTensor& input, const std::string& var_name,
size_t index) {
void SetFeedVariable(Scope* scope, const LoDTensor& input,
const std::string& var_name, size_t index) {
// If var_name Variable is not found in GlobalScope, a new variable will
// be created.
VLOG(3) << "SetFeedVariable name=" << var_name << " index=" << index;
Variable* g_feed_value = GetGlobalScope().Var(var_name);
Variable* g_feed_value = scope->Var(var_name);
auto& feed_inputs =
*(g_feed_value->GetMutable<std::vector<paddle::framework::LoDTensor>>());
if (index >= feed_inputs.size()) {
feed_inputs.resize(index + 1);
}
// shared data with input tensor
feed_inputs[index].ShareDataWith<T>(input);
feed_inputs[index].ShareDataWith(input);
// set lod
feed_inputs[index].set_lod(input.lod());
}

LoDTensor& GetFetchVariable(const std::string& var_name, size_t index) {
LoDTensor& GetFetchVariable(const Scope& scope, const std::string& var_name,
size_t index) {
// Since we want to fetch LodTensor from a variable, the variable must
// be created alreadly.
Variable* g_fetch_value = GetGlobalScope().FindVar(var_name);
Variable* g_fetch_value = scope.FindVar(var_name);
PADDLE_ENFORCE(g_fetch_value->IsType<FeedFetchList>(),
"Only %s can be invoked by GetFetchVariable",
typeid(FeedFetchList).name());
Expand Down
69 changes: 39 additions & 30 deletions paddle/framework/lod_tensor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -25,31 +25,50 @@ LoD SliceLevels(const LoD& in, size_t level_begin, size_t level_end) {
for (size_t i = level_begin; i < level_end; i++) {
new_lod.emplace_back(in.at(i));
}
// transform the lowest level to absolute offset.
LoD abs_offset_lod = ToAbsOffset(in);
new_lod.back() = abs_offset_lod[level_end - 1];
return new_lod;
}

LoD SliceInLevel(const LoD& in, size_t level, size_t elem_begin,
size_t elem_end) {
// slice the lod.
LoD new_lod;
new_lod.reserve(in.size() - level);
auto start = in.at(level)[elem_begin];
auto end = in.at(level)[elem_end];

for (auto it = in.begin() + level; it != in.end(); it++) {
auto it_begin = std::find(it->begin(), it->end(), start);
auto it_end = std::find(it_begin, it->end(), end);
PADDLE_ENFORCE(it_begin != it->end(), "error in parsing lod info");
PADDLE_ENFORCE(it_end != it->end(), "error in parsing lod info");
new_lod.emplace_back(it_begin, it_end + 1);
// reset offset if tensor is copyed and sliced.
std::transform(new_lod.back().begin(), new_lod.back().end(),
new_lod.back().begin(),
[start](int v) { return v - start; });
PADDLE_ENFORCE_EQ(new_lod.back().front(), 0, "error in slice LoD");
PADDLE_ENFORCE_LT(level, in.size());
PADDLE_ENFORCE_LT(elem_end, in[level].size());

LoD res;
res.resize(in.size() - level);
// copy the first level
res[0].assign(in[level].begin() + elem_begin,
in[level].begin() + elem_end + 1);
for (size_t lvl = 1; lvl < res.size(); lvl++) {
const auto& in_level = in[level + lvl];
const auto& above_level = res[lvl - 1];
auto& out_level = res[lvl];
out_level.assign(in_level.begin() + above_level.front(),
in_level.begin() + above_level.back() + 1);
}
PADDLE_ENFORCE_LE(new_lod.size(), in.size());
return new_lod;
for (size_t lvl = 0; lvl < res.size(); lvl++) {
// to make the first offset equals 0, all the elements minus the first
// element
size_t front = res[lvl].front();
for (auto& ele : res[lvl]) {
ele -= front;
}
}
return res;
}

LoD ToAbsOffset(const LoD& in) {
// the lowest level stores relative offsets
if (in.empty() || in.size() == 1) return in;
LoD result = in;
for (int level = result.size() - 2; level >= 0; level--) {
for (auto& ele : result[level]) {
ele = result[level + 1][ele];
}
}
return result;
}

bool operator==(const LoD& a, const LoD& b) {
Expand All @@ -75,17 +94,7 @@ bool operator==(const LoD& a, const LoD& b) {
size_t LoDTensor::NumElements(size_t level, size_t idx) const {
PADDLE_ENFORCE_LT(level, NumLevels());
PADDLE_ENFORCE_LT(idx, NumElements(level));
// the last level of LoD, just return number of records in Tensor
if (level == NumLevels() - 1) {
return lod_[level][idx + 1] - lod_[level][idx];
}
// high level of LoD, and there is another lower level, return number of
// lower-level elements
auto tmp = SliceInLevel(lod_, level, idx, idx + 1);
PADDLE_ENFORCE_GE(tmp.size(), 2);
// there is a 0 as a placeholder stored in LoD, so the number of elements
// equals lod.size() - 1
return tmp[1].size() - 1;
return lod_[level][idx + 1] - lod_[level][idx];
}

void LoDTensor::ShrinkLevels(size_t level_begin, size_t level_end) {
Expand Down
25 changes: 19 additions & 6 deletions paddle/framework/lod_tensor.h
Original file line number Diff line number Diff line change
Expand Up @@ -39,23 +39,36 @@ using Vector = thrust::host_vector<
#endif

/*
* 3-level LoD stores
* LoD is short for Level of Details.
*
* 0 10 20
* 0 5 10 15 20
* 0 2 5 7 10 12 15 20
*
* - in a level, each element indicates offset in the underlying Tensor
* - in a level, each element indicates relative offset of the lower level
* - the first element should be 0 and that indicates that this sequence start
* from 0
* - each sequence's begin and end(no-inclusive) is level[id, id+1]
*
* For example:
* 3-level LoD stores
*
* 0 2 3
* 0 2 4 7
* 0 2 5 7 10 12 15 20
*/
using LoD = std::vector<Vector<size_t>>;

/*
* Slice levels from a LoD.
* NOTE the lowest level should always be the absolute offsets of the underlying
* tensor instances. So if higher layers are sliced without the lowest level,
* the lower level of the sliced LoD will be transformed to the absolute offset.
*/
LoD SliceLevels(const LoD& in, size_t level_begin, size_t level_end);

LoD SliceInLevel(const LoD& in, size_t level, size_t elem_begin,
size_t elem_end);
/*
* Transform an LoD from relative offsets to absolute offsets.
*/
LoD ToAbsOffset(const LoD& in);

bool operator==(const LoD& a, const LoD& b);

Expand Down
31 changes: 15 additions & 16 deletions paddle/framework/lod_tensor_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -30,8 +30,8 @@ class LoDTensorTester : public ::testing::Test {
// 0 5 10 15 20
// 0 2 5 7 10 12 15 20
LoD lod;
lod.push_back(std::vector<size_t>{0, 10, 20});
lod.push_back(std::vector<size_t>{0, 5, 10, 15, 20});
lod.push_back(std::vector<size_t>{0, 2, 3});
lod.push_back(std::vector<size_t>{0, 2, 5, 8});
lod.push_back(std::vector<size_t>{0, 2, 5, 7, 10, 12, 15, 17, 20});

ASSERT_EQ(lod.size(), 3UL);
Expand All @@ -52,14 +52,14 @@ TEST_F(LoDTensorTester, NumLevels) { ASSERT_EQ(lod_tensor_.NumLevels(), 3UL); }

TEST_F(LoDTensorTester, NumElements) {
ASSERT_EQ(lod_tensor_.NumElements(0), 2UL);
ASSERT_EQ(lod_tensor_.NumElements(1), 4UL);
ASSERT_EQ(lod_tensor_.NumElements(1), 3UL);
ASSERT_EQ(lod_tensor_.NumElements(2), 8UL);
}

TEST_F(LoDTensorTester, NumElements2) {
ASSERT_EQ(lod_tensor_.NumElements(0, 0), 2UL);
ASSERT_EQ(lod_tensor_.NumElements(0, 1), 2UL);
ASSERT_EQ(lod_tensor_.NumElements(1, 1), 2UL);
ASSERT_EQ(lod_tensor_.NumElements(0, 1), 1UL);
ASSERT_EQ(lod_tensor_.NumElements(1, 1), 3UL);
}

TEST_F(LoDTensorTester, ShrinkLevels) {
Expand All @@ -68,37 +68,36 @@ TEST_F(LoDTensorTester, ShrinkLevels) {
LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.ShrinkLevels(level, level + 1);
ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level));
ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor_.data<float>());
}
// shrink 2 level
for (size_t level = 0; level < 2UL; ++level) {
LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.ShrinkLevels(level, level + 2);
// the lowest level's last element should be the tensor's batch_size.
ASSERT_EQ(new_lod_tensor.lod().back().back(),
lod_tensor_.lod().back().back());
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level));
ASSERT_EQ(new_lod_tensor.NumElements(1),
lod_tensor_.NumElements(level + 1));
ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor_.data<float>());
}
}

TEST_F(LoDTensorTester, ShrinkInLevel) {
size_t level = 0;
LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.ShrinkInLevel(level, 0, 2);
new_lod_tensor.ShrinkInLevel(level, 0, 1);
EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL);
EXPECT_EQ(new_lod_tensor.NumElements(0), 2UL);
EXPECT_EQ(new_lod_tensor.NumElements(1), 4UL);
EXPECT_EQ(new_lod_tensor.NumElements(2), 8UL);
EXPECT_EQ(new_lod_tensor.NumElements(0), 1UL);
EXPECT_EQ(new_lod_tensor.NumElements(1), 2UL);
EXPECT_EQ(new_lod_tensor.NumElements(2), 5UL);
ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor_.data<float>());

level = 1;
new_lod_tensor = lod_tensor_;
new_lod_tensor.ShrinkInLevel(level, 0, 2);
new_lod_tensor.ShrinkInLevel(level, 1, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 1UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 3UL);
ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor_.data<float>());
}

Expand Down
Loading

0 comments on commit 502e725

Please sign in to comment.