Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
87 changes: 87 additions & 0 deletions tests/model_executor/test_fused_moe_marlin_backend.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
"""
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

from types import SimpleNamespace

import paddle

from fastdeploy.model_executor.layers.moe import (
fused_moe_marlin_backend as marlin_backend,
)

paddle.set_device("gpu")


class _DummyLayer(paddle.nn.Layer):
def __init__(self, hidden_size=64, moe_intermediate_size=32, topk_method="topk", num_local_experts=2):
super().__init__()
self.num_local_experts = num_local_experts
self.num_experts = num_local_experts
self.hidden_size = hidden_size
self.moe_intermediate_size = moe_intermediate_size
self.top_k = 1
self.n_group = 1
self.topk_group = 1
self.topk_method = topk_method
self.routed_scaling_factor = 1.0
self.gate_correction_bias = paddle.zeros([self.num_experts], dtype="float32")
self.renormalize = True
self.fd_config = SimpleNamespace()

def extract_moe_ffn_weights(self, state_dict):
return state_dict["up"], state_dict["down"], None, None


def _make_weights(layer):
up = [
paddle.ones([layer.hidden_size, layer.moe_intermediate_size * 2], dtype="float16")
for _ in range(layer.num_local_experts)
]
down = [
paddle.ones([layer.moe_intermediate_size, layer.hidden_size], dtype="float16")
for _ in range(layer.num_local_experts)
]
return up, down


def test_marlin_process_and_apply_paths(monkeypatch):
method = marlin_backend.MarlinWeightOnlyMoEMethod()
layer = _DummyLayer()

prev_dtype = paddle.get_default_dtype()
paddle.set_default_dtype("float16")
method.create_weights(layer)
paddle.set_default_dtype(prev_dtype)
up, down = _make_weights(layer)
method.process_loaded_weights(layer, {"up": up, "down": down})

scales = paddle.arange(128, dtype="float32").reshape([2, 64])
permuted = marlin_backend.marlin_permute_scales(scales, size_k=16, size_n=64, group_size=8)
assert permuted.shape == [2, 64]

gate = paddle.nn.Linear(layer.hidden_size, layer.num_experts, bias_attr=False)
x = paddle.ones([2, layer.hidden_size], dtype="float16")
monkeypatch.setattr(
marlin_backend,
"MoeWna16MarlinGemmApi",
lambda *_args, **kwargs: (paddle.zeros([kwargs["size_m"], kwargs["size_n"]], dtype=x.dtype),),
)
out = method.apply(layer, x, gate, topk_ids_hookfunc=lambda **_k: None)
assert out.shape == [2, layer.hidden_size]

layer.topk_method = "noaux_tc"
out_noaux = method.apply(layer, x, gate, topk_ids_hookfunc=lambda **_k: None)
assert out_noaux.shape == [2, layer.hidden_size]
Loading