Skip to content

PSYZ1234/PosePN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PosePN

LiDAR-based localization using universal encoding and memory-aware regression

Environment

  • python

  • pytorch

  • MinkowskiEngine

Data

We support the Oxford Radar RobotCar, vReLoc, and NCLT datasets right now.

Oxford data_root
├── 2019-01-11-14-02-26-radar-oxford-10k
│   ├── velodyne_left
│       ├── xxx.bin
├── pose_stats.txt
├── pose_max_min.txt
├── train_split.txt
├── test_split.txt

Run

Oxford, vReLoc, NCLT

  • train -- 1 GPU
python train.py
  • test -- 1 GPU
python eval.py

Acknowledgement

We appreciate the code of PointNet, PointNet++, SOE-Net, MinkLoc3D, and AtLoc they shared.

Citation

@article{YU2022108685,
title = {LiDAR-based localization using universal encoding and memory-aware regression},
journal = {Pattern Recognition},
volume = {128},
pages = {108685},
year = {2022},
issn = {0031-3203},
doi = {https://doi.org/10.1016/j.patcog.2022.108685},
author = {Shangshu Yu and Cheng Wang and Chenglu Wen and Ming Cheng and Minghao Liu and Zhihong Zhang and Xin Li}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages