Simply install requirements
pip install -r requirements.txt
Model in onnx format, with input is an image with pixel values from [0, 1], outputs with shape [batch_size, anchors, 4 + num_classes + 1]
Example 1 line in outputs is
# Format is [x_center, y_center, w, h, obj_conf, class_1_conf, class_2_conf]
[0.51 0.75 0.21 0.19 0.85 0.1 0.9]
Model in onnx format, with input is an image read from cv2.imread
, 3 outputs are scores
, bboxes
and landmarks
Example 1 line in outputs is
# bboxes
[ 0.67413944 1.0143973 -1.1417826 0.16699778]
# scores
[9.9962950e-01 3.7046883e-04]
# landmarks
Ground truth labels in yolo format [class_idx, x_center, y_center, w, h]
0 0.725000 0.287500 0.089394 0.070455
Predict labels also in yolo format, with confidence [class_idx, x_center, y_center, w, h, conf]
0 0.8927168528238932 0.9185009002685547 0.17276369730631513 0.13056144714355478 0.8909046649932861
To get predict of model, modify path in predict.py
and run
python predict.py --onnx ./weights/yolov5m_v0_0_1.onnx \
--image_dir ../__testset__/TCB-VJA-testset_1/all/images \
--save_txt ./output_labels \
--backend yolo \
--gpu
To get evaluation value such as mAP
, run
python evaluate.py -gt ../__testset__/TCB-VJA-testset_1/all/labels \
-dr ./output_labels \
--image_dir ../__testset__/TCB-VJA-testset_1/all/images \
--num_classes 2