Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add log2, log10 and log256 functions #3670

Merged
merged 9 commits into from
Sep 7, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
* `Strings`: optimize `toString`. ([#3573](https://github.com/OpenZeppelin/openzeppelin-contracts/pull/3573))
* `Ownable2Step`: extension of `Ownable` that makes the ownership transfers a two step process. ([#3620](https://github.com/OpenZeppelin/openzeppelin-contracts/pull/3620))
* `Math` and `SignedMath`: optimize function `max` by using `>` instead of `>=`. ([#3679](https://github.com/OpenZeppelin/openzeppelin-contracts/pull/3679))
* `Math`: Add `log2`, `log10` and `log256`. ([#3670](https://github.com/OpenZeppelin/openzeppelin-contracts/pull/3670))

### Breaking changes

Expand Down
12 changes: 12 additions & 0 deletions contracts/mocks/MathMock.sol
Original file line number Diff line number Diff line change
Expand Up @@ -33,4 +33,16 @@ contract MathMock {
function sqrt(uint256 a, Math.Rounding direction) public pure returns (uint256) {
return Math.sqrt(a, direction);
}

function log2(uint256 a, Math.Rounding direction) public pure returns (uint256) {
return Math.log2(a, direction);
}

function log10(uint256 a, Math.Rounding direction) public pure returns (uint256) {
return Math.log10(a, direction);
}

function log256(uint256 a, Math.Rounding direction) public pure returns (uint256) {
return Math.log256(a, direction);
}
}
64 changes: 4 additions & 60 deletions contracts/utils/Strings.sol
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,8 @@

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
* @dev String operations.
*/
Expand All @@ -15,39 +17,7 @@ library Strings {
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = 1;

// compute log10(value), and add it to length
uint256 valueCopy = value;
if (valueCopy >= 10**64) {
valueCopy /= 10**64;
length += 64;
}
if (valueCopy >= 10**32) {
valueCopy /= 10**32;
length += 32;
}
if (valueCopy >= 10**16) {
valueCopy /= 10**16;
length += 16;
}
if (valueCopy >= 10**8) {
valueCopy /= 10**8;
length += 8;
}
if (valueCopy >= 10**4) {
valueCopy /= 10**4;
length += 4;
}
if (valueCopy >= 10**2) {
valueCopy /= 10**2;
length += 2;
}
if (valueCopy >= 10**1) {
length += 1;
}
// now, length is log10(value) + 1

uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
Expand All @@ -72,33 +42,7 @@ library Strings {
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = 1;

// compute log256(value), and add it to length
uint256 valueCopy = value;
if (valueCopy >= 1 << 128) {
valueCopy >>= 128;
length += 16;
}
if (valueCopy >= 1 << 64) {
valueCopy >>= 64;
length += 8;
}
if (valueCopy >= 1 << 32) {
valueCopy >>= 32;
length += 4;
}
if (valueCopy >= 1 << 16) {
valueCopy >>= 16;
length += 2;
}
if (valueCopy >= 1 << 8) {
valueCopy >>= 8;
length += 1;
}
// now, length is log256(value) + 1

return toHexString(value, length);
return toHexString(value, Math.log256(value) + 1);
}
}

Expand Down
193 changes: 156 additions & 37 deletions contracts/utils/math/Math.sol
Original file line number Diff line number Diff line change
Expand Up @@ -161,41 +161,16 @@ library Math {
}

// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`.
// We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
// This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
// Using an algorithm similar to the msb computation, we are able to compute `result = 2**(k/2)` which is a
// good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1;
uint256 x = a;
if (x >> 128 > 0) {
x >>= 128;
result <<= 64;
}
if (x >> 64 > 0) {
x >>= 64;
result <<= 32;
}
if (x >> 32 > 0) {
x >>= 32;
result <<= 16;
}
if (x >> 16 > 0) {
x >>= 16;
result <<= 8;
}
if (x >> 8 > 0) {
x >>= 8;
result <<= 4;
}
if (x >> 4 > 0) {
x >>= 4;
result <<= 2;
}
if (x >> 2 > 0) {
result <<= 1;
}
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);

// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
Expand All @@ -217,10 +192,154 @@ library Math {
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
uint256 result = sqrt(a);
if (rounding == Rounding.Up && result * result < a) {
result += 1;
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}

/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}

/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}

/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}

/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}

/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}

/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
Loading